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Abstract

The objectives of the proposed work are to: 1) establish an integration infrastructure
for intrusion detection, based on a process engineering approach; 2) investigate system-level
intrusion detection techniques for the fusion and correlation of local information about
intrusions, based on the integration infrastructure for intrusion detection; and 3)  develop an
integrated intrusion detecti;)n system as a concept technological demonstration of the proposed
integration infrastructure and system-level intrusion detection techniques. In this final project
report, we present the architecture of an integrated intrusion detection system based on the
process engineering approach, as well as various intrusion detection techniques that are
employed in this integrated intrusion detection system. The testing results of these intrusion

detection techniques are also illustrated to demonstrate their intrusion detection performance.

Various attributes of system activity data for intrusion detection are tested and compared.




Objectives

An intrusion is a set of actions that intend to compromise the security (i.e., integrity,
confidentiality, availability, accountability, functionality, and survivability) of a computer
network system. Intrusions to the secure operation of a computer network system may take many
forms: external attacks, internal misuses, network-based attacks, host-based attacks, information
gathering, access to pfivii\eged services, denial of service, and so on. The nation’s defense
systems are increasingly dependent on computer network systems for information
communication and processing. Connected information systems are vulnerable to intrusions.
Threats to computer network systems would undermine the nation’s technology-based strategy of
military superiority. Therefore, the importance of computer network security has been well
acknowledged.

Existing techniques for network security management generally fall in two categories:
prevention and detection. Intrusion prevention plans and enforces security policies that protect a
computer network system against intrusions at potential points of break-in. Security policies
specify authorized and/or unauthorized network activities concerning many aspects of network
security, such as access control, confidentiality, data integrity, non-repudiation, accountability,
and so on. Requests for unauthorized network activities are rejected. A number of techniques are
available to support security policies, including encryption, authentication, firewall, application
gateways, and other well-known network management protocols such as DNS, SMTP and
SNMP.

However, not all security needs can be specified as security policies in advance due to the
unlimited, unpredictable, and uncertain nature of intrusions. For example, the distinction between

unauthorized and authorized network activities can be extremely blurred. It is often difficult to




determine whether a request for a network service is malicious or not. A request for a network
service may be a part of a malicious attack or a normal network activity. The rejection of a
request of such a nature implies a degradation of network service to the user who makes the
request without a malicious intention. Some authorized network activities may be used to launch
a malicious attack. Hence, a tradeoff between network security -and network service must be
considered when making security policies. Typically, intrusion prevention is used to provide a
baseline defense against intrusions.

Intrusion detectipn techniques are necessary to complement intrusion prevention for
discovering intrusions while they are taking place. Intrusion detection techniques deal with the
monitoring, assessment, diagnosis and response of intrusions. Network activities are monitored
to detect the presence of an intrusion by collecting, storing, and analyzing security-relevant data
(i.e., audit data and network traffic data) which may demonstrate symptoms of intrusions. A
diagnosis is performed to trace the origin, path and type of the intrusion and to assess the impact
(extent and severity) of the intrusion accordingly. Diagnostic results assist in choosing responses
(e.g., warning system administrators, reporting incidents, launching countermeasures to prevent
further damage).

Intrusion detection techniques can be classified into five categories: statistical-based,
signature-based, specification-based, prediction-based, and probability-based. Statistical-based
techniques build statistical profiles (e.g., frequency distributions) for quantitative measures of the
normal network behavior, and detect significant deviations of an observed network behavior
from those statistical profiles. Signature-based techniques recognize well-known intrusion
signatures of qualitative nature, such as strings and event sequences. Specification-based

techniques represent the normal behavior (e.g., authorized operations) of privileged programs in




a symbolic form (e.g., predicate logic), and check for deviations from the specification of the
normal behavior. Prediction-based techniques induce the time-series relationship of network
events, and compare an observed event with the anticipated event for anomaly detection.
Probability-based techniques use Bayesian evidential reasoning to determine the probability of an
intrusion based on an evidence for its occurrence.

Therefore, those intrusion detection techniques respond to different aspects of network
activities and different kinds of intrusive behavior. For example, signature-based techniques react
to only specific types of intrusions with known signatures. Prediction-based techniques concern
only the temporal aspect of intrusive behavior. Not only are those techniques limited in the type
of intrusive behavior, but they also are restrained in the scope of intrusive behavior. For example,
probability-based techniques currently consider isolated evidences and intrusions. Existing work
on both specification-based techniques and statistical-based techniques focuses on the behavioral
specification and profiling for individual components (e.g., users, application programs, routers,
etc.) in a computer network system. The specification and profiling can hardly scale up to the
sophisticated behavior at the system level which involves multiple components and their
interactions in unlimited manners. Therefore, different intrusion detection techniques offer
diverse but point solutions to intrusion detection, and currently lack the power to address the
system-level, structural aspect of intrusive behavior. Apparently, intrusions are not limited to
known types or local scopes of network activities. When point solutions are applied to the
system-level intrusive behavior, they act like diverse but potentially unreliable local sensors.
System-level solutions to intrusion detection are required to correlate and fuse the outcomes of

local sensors into a more reliable, global awareness of intrusions. A coherent infrastructure is




also necessary to integrate system-level techniques with the existing techniques to form an

integrated intrusion detection system.

The objectives of the proposed work are to:

1) “Establish an integration infrastructure for intrusion detection, based on a process engineering
approach;

2) Investigate system-level intrusion detection techniques for the fusion and correlation of local
information about intrusions, based on the integration infrastructure for intrusion detection;
and

3) Develop an integrated intrusion detection system as a concept technological demonstration
(CTD) of the proposed integration infrastructure and system-level intrusion detection
techniques.

In this final project report, we present the architecture of an integrated intrusion detection
system based on the process engineering approach, as well as various intrusion detection
techniques that are employed in this integrated intrusion detection system. The testing results of
these intrusion detection techniques are also illustrated to demonstrate their intrusion detection

performance.




Chapter 1: A System Architecture for Intrusion Detection

This chapter describes the architecture of an integrated intrusion detection system based
on a process engineering approach. Intrusion detection techniques employed in this system are
presented. The testing performance of these intrusion detection techniques is illustrated in the
following chapters.

An intrusion into an information system tries to compromise the security of the system.
Intrusion Detection Systems (IDSs) attempt to detect these intrusions. Specifically, this chapter
discusses what an IDS requires from the target information system and how the IDS detects
intrusions into the target information system. We describe the architecture of a distributed host-
based IDS developed at the Information and Systems Assurance Laboratory, Arizona State
University. At each host machine in the information system we install an event data collector that
collects and filters data of events from the host machine. The Centralized IDS Server receives the
processed data and sends them to Individual Technique Servers. These Individual Technique
Servers use different intrusibn detection algorithms covering both anomaly detection techniques
and signature recognition techniques. Each Individual Technique Server determinés an intrusion
warning (IW) level for each event. The Centralized IDS Server then integrates the IW levels from

the Individual Technique Servers into a composite IW level, and provides it to the security

administrator.

L. INTRODUCTION
Information security has now become a critical issue with rapid development of e-
commerce transaction systems over the Internet. An information system for an organization

typically consists of a network of host machines. An intrusion into the information system stems




either from inside the network or outside the network, and can steal classified information or
create havoc in the system and halt normal user activities, incurring huge monetary and
credibility losses. An Intrusion Detection System (IDS) aims in detecting intrusive activities, and
gives warnings to the System Security Administrator (SSA). Existing IDSs can be categorized
into three types: host-based IDS, network-based IDS and router-based IDS (Durst et al., 1999).

Host-based IDSs are usually deployed on individual host-machines to monitor activities
on the host machines. Since the host-based IDSs are deployed in individual host machines, their
implementation is machine-dependent, and takes away much of the computing power from the
users of the host machines. If the hosts become victims from intrusions, then IDSs are brought
down along with the host machines. Moreover, separate IDSs on individual host machines do not
provide a direct, complete picture of distributed intrusions against a network, making it difficult
for the SSA to take corrective actions. The main advantage of the host-based IDSs is that it can
detect intrusions targeting the host machines from both insiders and outsiders.

Network-based IDSs are installed in some strategic computers in the network to monitor
data packages sent between host machines. Network-based IDSs can detect violations of network
security policy, but may not be able to process information such as not only the header portion
but also the data portion of data packages so as to reveal specific intrusive activities for accurate
detection. Moreover, large volumes of network traffic data present difficulty in efficiently
processing such data.

Router-based IDSs are installed on routers to monitor data packages passing through
routers, thus trying to prevent intrusive data packages from entering the network inside the

_router. Router-based IDSs are similar to network-based IDSs, and thereby suffer from similar

problems.




At the Information and Systems Assurance Laboratory (ISA), Arizona State University,
we have developed a distributed, host-based IDS to-overcome the problems with many existing
host-based IDSs employed on individual host machines in the target information system. We
refer to it as ISA-IDS. It is designed to be cross-platform and distributive. Only an event data
collector needs to be installed in each of the host machines in the target information system to
passively monitoring activities and collect activity data. The users of a host machine may not
notice the event data collector at all. The event data collectors send only relevant event
information to the centralized IDS server for farther processing. The centralized IDS server in
turn calls on the individual technique servers to process the event data stream one by one. Each
of the individual technique servers uses a different intrusion detection algorithm and returns a
test value indicating how the specific individual technique considers the input event as normal or
intrusive. The test values from all the individual technique servers are combined together in the
centralized IDS server using a fusion algorithm. Using several individual technique servers
ensure that we cover different kinds of intrusion detection techniques and offset one technique’s
shortcomings with another one's advantages, making the intrusion detection more accurate and
robust. New intrusion detection algorithms can also be added into ISA-IDS through deploying
more individual technique servers. We have tested this prototype using a large portion of
DARPA (Defense Advanced Research Projects Agency)’s 1998 evaluation data (Lippmann,
2000).

This chapter describes the architecture of ISA-IDS and implementation details. We first
review some of the existing IDSs. We then present the collection process and characteristics of

the DARPA evaluation data that we have used to test a prototype of ISA-IDS. We also describe




the implementation of the prototype and individual techniques in this prototype, and summarize
the testing results.

By illustrating the design of the ISA-IDS system archit¢cture and the concepts underlying
our intrusion detection and information fusion techniques, we demonstrate how different
intrusion detection techniques work together in an IDS to detect intrusions and what the IDS
requires from the target information system. We hope that this will help people (i.e., SSAs,
executives, managers, and others) gain a better understanding of the current state-of-the-art of

IDSs and make better decisions to protect information systems in their organizations.

II. RELATED WORK
There are surveys on existing host-based, network-based and router-based IDSs
(Axelsson, 1998; Debar et al., 1999). In this paper we focus on host-based IDSs. Host-based
IDSs monitor activities occurring on individual host machines in an information system through
computer audit data. A detailed description of computer audit data is provided in the next

section.

Table 1-1 summarizes the characteristics of some host-based IDSs. Those IDSs are
distinguished with regard to the intrusion detection technique, the information fusion technique,

and the distribution of detection functions.

Table 1-1. Characteristics of existing host-based IDSs.

IDS System Architecture Intrusion Detection | Fusion
Cl Centralized Anomaly detection

CSM Distributed on target hosts Signature recognition

DPEM Distributed on target hosts Anomaly detection

COAST- Distributed on target hosts




EIMDT
EMERALD Distributed on target hosts and | Signature recognition
security servers Anomaly detection
GrIDS Centralized Anomaly detection
Haystack Centralized Signature recognition | Fixed weights
Anomaly detection
Hyperview Centralized Signature recognition
Anomaly detection
IDES/NIDES | Centralized Signature recognition
Anomaly detection
IDIOT Centralized Signature recognition
NADIR Centralized Signature recognition
RIPPER Centralized Signature recognition
_ Anomaly detection
USTAT Centralized Signature recognition

Note: a blank cell in the table indicates that either information or technology is not available.

Intrusion detection techniques generally fall into two categories: signature recognition
and anomaly detection. Signature recognition (also called “misuse detection” in some'literature)
techniques identify and store signature patterns of known intrusions, match activities in an
information system with known patterné of intrusion signatures, and signal intrusions when there
is a match. Signature recognition techniques are efficient and accurate in detgpting known
intrusions, but cannot detect novel intrusions whose signature patterns are unknown. Anomaly
detection techniques establish a profile of a subject’s normal activities (a norm profile), compare
observed activities of the subject with its norm profile, and signal intrusions when the subject’s
observed activities differ largely from its norm profile. The subject may be a user, file, privileged
program, host machine, or network. Anomaly detection techniques can detect both novel and
known intrusions if they demonstrate large deviations from the norm profile. Since anomaly

detection techniques signal all anomalies as intrusions, false alarms are expected when anomalies




are caused by behavioral irregularity instead of intrusions. Hence, signature recognition
techniques and anomaly detection techniques are often used together to complement each other.

When both a signature recognition technique and an anomaly detection technique are
used in an IDS to monitor the same observed activities in an information system, the two
different techniques may produce different evaluation results. An information fusion technique is
required to combine different results from different intrusion detection techniques on the same
observed activities into a composite score for an overall assessment of intrusion likelihood with
the observed activities. Very few IDSs incorporate an information fusion technique. The existing
information fusion techniques for intrusion detection are based on mainly a fixed weight vector
that assigns a fixed weight to the result from an individual intrusion detection. The fixed weight
reflects the relative importance of an individual intrusion technique in producing the overall
assessment of intrusion likelihood.

Existing IDSs also differ in their architecture to support various methods of distributing
intrusion detection functions. Two common architectures are: centralized and distributed. A
centralized architecture distributes intrusion detection functions usually on a security server. A
distributed architecture usually distributes intrusion detection functions to security modules
running on the target host machines in an information system. Sometimes, security servers are
also used in a distributed architecture to coordinate security modules and perform further
analysis.

Each IDS listed in Table 1-1 is briefly described below to give some concrete pictures of
how IDSs work. The Purdue University COAST (Computer Operations, Audit, and Security
Technology) Laboratory’s Enhanced Intrusion and Misuse Detection Techniques program

(COAST-EIMDT) (Balasubramaniyan et al., 1998) relies on multiple independent entities, called
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autonomous agent, working collectively. Autonomous agents perform certain security monitoring
function at each host. They are independently running entities, i.e., their execution is scheduled
only by the operating system, and not by other processes. Agents may or may not need data
produced by other agents to perform their work and may receive high-level control commands
from other entities. The agents can be added and removed from a system without altering other
components and without restarting the IDS and can be tested on their own before introducing
them into a more complex environment. The results collected from the agents are organized into
a hierarchical manner to ensure scalability of the system. Hence, COAST-EIMDT uses a
distributed architecture with intrusion detection functions on target hosts. Although COAST-
EIMDT does not specify intrusion detection techniques that it may use, any intrusion detection
can fit into this architecture to carry out the intrusion detection functions.

IDES (Intrusion Detection Expert System) (Lunt et al., 1992) is a real-time intrusion
detection expert system, which has now been merged into NIDES (J agannathan et al., 1998), the
Next generation IDES. The audit data collected in the hosts is securely transmitted to NIDES via
the network and processed to provide real-time response. The statistical engine of IDES/NIDES
verifies each new audit record against the norm profiles for both the subject and the group of
subject it belongs to. It also verifies each session against the norm profile of sessions when the
session completes. IDES/NIDES also consists of an expert system that keeps signature patterns
of known intrusions. Hence, IDES/NIDES uses a centralized architecture of intrusion detection
functions, and employs both signature recognition and anomaly detection techniques. When
different measures of the same observed activities are used to detect intrusions, IDES/NIDES

proposes a squared sum of the results from individual measures to generate a composite Score.
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IDES/NIDES does not address the combination of the results from its statistical engine and the
expert system for signature recognition.

GrIDS (Graph based Intrusion Detection System) (Chen et al., 1996) employs data source
m&dules that runs on each host and reports relevant information to graph engines that build a
graph representation of activity in the network and compare the graph with the norm profile for
detecting intrusions. Hence, GrIDS uses a centralized architecture, and employs mainly an
anomaly detection technique for intrusion detection.

NADIR (Network Anomaly Detector and Intrusion Reporter) (Hochberg et al., 1993)
performs distributed data collection by employing the existing service nodes in Los Alamos
National Laboratory's Integrated Computer Network (ICN) to collect audit information, which is
then analyzed by a central expert system that compares the summary of the weekly audit data
with rules in the expert system describing violations of security policies and suspicious activities.
Hence, NADIR uses a centralized architecture, and employs a signature recognition technique for
intrusion detection.

In the peer-based IDS described in (White et al., 1996) Cooperative Security Managers
(CSM) are employed to perform distributed intrusion detection that does not need a hierarchical
organization or a central coordinator. Each CSM performs as a local IDS for the host where it
runs, but can additionally communicate with other CSMs and exchange information about users
moving through the network and detect suspicious activities based on signature recognition.
Hence, CSM uses a distributed architecture of intrusion detection functions on the target host
machines, and employs a signature recognition technique for intrusion detection.

The IDS based on computer immunology (CD, emulates the biological immune systems to

some extent by employing a set of “self” patterns of event sequences to detect “non-self” at
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various key locations in the information system (Forrest et al., 1997). CI uses a centralized
architecture, and employs an anomaly detection technique for intrusion detection.

The EMERALD project (Porras & Neumann, 1997) proposes a distributed architecture
for intrusion detection that employs entities called service monitors that are deployed to hosts
and perform monitoring functions. It also defines several layers of monitors for performing data
reduction in a hierarchical fashion. Hence, EMERALD uses a distributed architecture of
intrusion detection functions on the target host machines and some security servers, and employs
both a signature recognition technique and an anomaly detection technique from IDES/NIDES.
EMERALD does not address the fusion of results from different intrusion detection techniques
for the same observed activities.

Hyperview (Debar et al., 1992) employs an artificial neural network component and an
expert system component for intrusion detection. The expert system component monitors audit
trails for known signatures of intrusion. The artificial neural network component adaptively
learns the behavior of a user and raises alarms when the audit events deviate from the already
learned behavior. Hyperview connects the artificial neural network to two expert systems. The
first one monitors the operation and the training of the network and evaluates its output. The
other scans the audit trail for known patterns of intrusions, and together with the output from the
first expert system forms an opinion if it should raise an alarm. Hence, Hyperview employs both
a signature recognition technique and an anomaly detection technique for intrusion detection, and
uses a centralized architecture.

USTAT (Unix State Transition Analysis Tool) (Ilgun, 1993) is a prototype
implementation of the state transition analysis approach to intrusion detection. The state

transition analysis takes the view that the computer initially exists in a secure state, but as a result
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of a number of penetrations - modeled as state transitions - it ends up in a compromised target
state. That isr, state transitions are used to describe signature patterns of known intrusions.
USTAT uses a centralized architecture, and employs only a signature recognition technique.
" DPEM (Distributed Program Execution Monitoring) (Ko et al., 1997) focuses on the
correct security behavior of the system, i.e., a security privileged application that runs on the
system. DPEM reads the security specifications of acceptable behavior of privileged UNIX
programs, and checks audit trails for security violations. The DPEM prototype monitors
programs executed in a distributed system by collecting execution traces from the various hosts,
and where relevant, distributing them across the network for processing. Hence, DPEM uses a
distributed architecture, and employs an anomaly detection technique for intrusion detection.

IDIOT (Intrusion Detection In Our Time) (Kumar & Spafford, 1995) was developed at
COAST (now the Center for Education and Research in Information Assurance and Security -
CERIAS) in Purdue University. It employs Colored Petri-nets (CP-nets) for signature based
(pattern matching) intrusion detection and suggests a layered approach for applying signature-
based techniques. The patterns (signatures) are written in an ordinary textual language and then
parsed, resulting in a new pattern-matching engine. This engine can then be dynamically added to
an already running IDIOT instance via the user interface. The user can even extend IDIOT to
recognize new audit events. Hence, IDIOT uses a centralized architecture, and employs a
signature recognition technique for intrusion detection.

RIPPER (Lee et al., 1999) uses data mining for automatic and adaptive construction of
intrusion detection models. It utilizes auditing programs for extracting extensive set of features to
describe each network connection or host session, a}nd applies data mining programs to learn

rules that accurately capture the behavior of intrusions and normal activities. These rules can then
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be used for signature detection and anomaly detection. The RIPPER framework implements
several algorithms. The user can pre-process audit data to provide the algorithms with a
representation on a natural level. The user then gives RIPPER the task of automatically mining
pat]:éms of abusive or normal behavior. Hence, RIPPER uses a centralized architecture, and
employs a data mining technique for both signature recognition and anomaly detection.

Haystack was developed as an audit data reduction and intrusion detection tool (Smaha,
1988). It collects audit data from a target host machine, and performs primitive statistical analysis
to detect deviations of observed activities from normal activities and to compare observed
activities with known intrusions. Haystack is the only IDS in Table 1-1 that incorporates an
information fusion technique. Haystack calculates a weighted intrusion score by summing the
results from multiple intrusion detection components. Fixed weights are assigned. Hence,
Haystack uses a centralized architecture, and employs both a signature recognition technique and
an anomaly detection technique for intrusion detection along with the fixed-weight technique for
information fusion.

Table 1-1 does not include virus scanners and monitors. Most virus scanners and
monitors are based on signature recognition techniques to capture signatures of viruses and use
those signatures to detect viruses. Those virus scanners and monitors can also be considered as
IDSs with focus on data in the fiie system and other media rather than computer audit data.
Because virus scanners and monitors monitor data that are different from computer audit data
monitored by host-based IDSs, virus scanners and monitors can be included in host-based IDSs
as additional components to produce separate intrusion reports.

Many of the IDSs in Table 1-1 are still in a research prototype stage. Those commercial

IDSs rely mainly on signature recognition techniques with the inherent limitation of detecting
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novel intrusions (Debar et al., 1999). Some of the existing IDSs, such as Hyperview and
EMERALD, incorporate both signature recognition techniques and anomaly detection
techniques. However, if both signature recognition techniques and anomaly detection techniques
are used together to monitor the same activities in an information system, we should expect
~ different results from different intrusion detection techniques. The fusion of different results into
a composite index of intrusion warning is necessary.

Hence, in addition to signature recognition techniques and anomaly detection techniques,
our ISA-IDS also includes the function of information fusion. Moreover, the signature
recognition techniques and the anomaly detection techniques in the ISA-IDS have significantly
advanced the state-of-the-art of intrusion detection by overcoming problems with the existing
intrusion detection techniques in performance and scalability (Ye et al. 1, 2000; Ye et al. 2, 2000;
Ye & Li, 2000; Ye et al. 3, 2000; Ye, 2000). The main driver of developing the ISA-IDS lies in
the advantage of these intrusion detection techniques. Currently, the ISA-IDS focuses on
computer audit data, and uses a distributed architecture. ISA-IDS places little overhead on the
target information system, and uses independent host machines (security servers) to perform
intrusion detection. ISA-IDS will have the capability of processing network traffic data in the
future. The following sections provide more details in the design, implementation and testing of

ISA-IDS.

III. DATA SOURCE
ISA-IDS is a distributed host-based IDS that has been designed to collect audit event data
from many hosts. In the prototype implementation of ISA-IDS we have simplified the data

collection process by using the audit data from the Defense Advanced Research Projects Agency
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(DARPA). This has been done to keep our focus towards implementing the centralized IDS
server and the individual technique servers. In the next stage of research we will develop the
event data collectors.

The Information Systems Technology Group of MIT Lincoln Laboratory (LL), under the
DARPA Information Technology Office and Air Force Research Laboratory (AFRL)
sponsorship, collected network traffic data and computer audit data containing both normal and
intrusive activities from a simulation network, and developed a guideline for evaluating existing
intrusion detection systems in 1998 (Lippman et al., 2000). The simulation network architecture
to collect the network sniffed traffic data and audit data is shown in Figure 1-1. Figure 1-1 shows
the points where network traffic data from a Sun OS sniffer and computer audit data from the
Solaris Basic Security Module (BSM) are collected. The ISA-IDS prototype uses only the Solaris
Basic Security Module (BSM) audit data from this 1998 DARPA-LL data set.

For this 1998 DARPA-LL data set, normal activities were simulated to resemble normal
activities occurring in a real computer network at Air Force (Lippman et al., 2000). A large
amount of web, telnet, and mail traffic was generated between the inside host machines and the
outside host machines and web sites. Many user automata of various types such as secretaries,
programmers and managers were also used to generate normal activities. Statistical profiles of
various user types were used to simulate normal activities. These statistical profiles consider
information such as the occurrence frequency of different UNIX commands, typical login times
and session durations, and so on. Human actors were also used to perform more complex tasks
such as upgrading software, adding users, remotely accessing programs, and performing other

system administrative tasks. Those simulated normal activities have created the “white noises”

background.
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Figure 1-1. The simplified offline simulation network architecture for collecting network

sniffed and audit data.

While simulating normal activities in the simulation network, intrusions have also been
simulated on the “white noise” background. Simulated intrusions fall into four categories: denial
of service attacks to disrupt a host or network service, remote-to-local attacks where an attacker
without an account on a victim machine attempted to gain local access, user-to-root attacks
where a local user attempted to gain privileges of the UNIX root user, and probe-scan attacks
using programs to probe or scan a network for gathering information such as a topology of the
network. More details about the simulation of normal and intrusive activities for the 1998
DARPA-LL data can be found in (Kendall, 1999; Lippmann et al., 2000; Northcutt, 1999).

Normal and intrusive activities occurring on a Sun Solaris machine in the simulation
network have been recorded by the Solaris auditing facility, BSM, producing the computer audit
data with a mixture of normal and intrusive activities. BSM audit data consist of a sequence of

audit files. Each audit file consists of many audit records. Each audit record captures an auditable
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event. Each audit record includes a sequence of audit tokens, each of which contains specific
information about the attributes of the event. By an “event” we point to a particular activity in the
underlying computer system at a certain time along with the information pertaining to that
actwi\'fity. “Attributes” of an event are the variables that contain information about such activity.

There are twenty-five different audit tokens. However, most audit records contain only a
few tokens such as the header token with such information as an event ID indicating the type of
audit event, the time when the record was created and so on, the subject token with such
information as the user ID, the group ID, the session ID and so on, and a return token indicating
the return status of the event.

The BSM of Solaris monitors each event on a host machine and generates a sequence of
audit records. Auditable events are generated by system calls used by the kernel of the operation
system or by application programs. BSM defines 284 different types of audit events. There are
thousands of commands in Solaris UNIX. The audit events are more close to the kernel of the
operating system. Hence, the type of event is more representative than the actual command
sequences used. For example, we can use any text editor, such as, vi, ed, pico to edit a file, but
most of the time the audit event stream will contain the following event types: AUE_EXECVE,
AUE_OPEN_R, AUE_ACCESS, AUE_STAT.

The 1998 DARPA-LL data are provided in two parts — the training data set and the testing
data set. The training data set is provided for developing an IDS system and configuring its
parameters. The testing data set is provided for testing the performance of the trained IDS
system. There are more than 300 instances of 38 different intrusions in the training and testing
data. Using the provided description of intrusions in the training data from the MIT Lincoln

Laboratory, we can label each audit record and its corresponding audit event in the training data
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set as either normal orr intrusive along with the intrusion name. The training data set covers
intrusive activities occurring in the midst of normal activities for sevén weeks. Another two
weeks of network sniffed traffic data and BSM audit data containing both normal and intrusive
dafa are provided as the testing data. This data set contains all those intrusions that were in
training set and also new type of intrusions. The data records in the testing data set are not
labeled. The IDS are allowed to scan though this data set only once, and the IDS has to label,
using its algorithms, each data record as normal or intrusive.

The ISA-IDS prototype conforms to this specification from the MIT Lincoln Laboratory
for evaluating intrusion detection systems. The Centralized IDS Server.of the prdtotype ISA-IDS
scans through the training data set to set the parameters of the techniques we have integrated in
the system through the Individual Technique Servers. The Centralized IDS Server then takes the
testing data set, passes each audit data record to the Individual Technique Servers, fuses their
results, and labels each audit data record‘ as either normal or intrusive.

Since no label is provided for audit events in the testing data set of the 1998 DARPA-LL
data, we do not know the ground truth of these audit events and thus cannot evaluate the
performance of the ISA-IDS prototype with the ground truth. Therefore, we cannot use the
testing data set for testing the ISA-IDS. Instead, we drew our two-day training data and two-day
testing data from the seven-week training data set of the 1998 DARPA-LL data. Two-day data
are used for training and testing to reduce the amount of time required to complete the training
and testing. In the seven weeks of training data, there are in total 35 days of data. We picked four
days of data as a representative of these 35 days of data. We wanted to pick two days where there
are not many intrusions and two days where there are many intrusions. According to this

criterion, we chose week-1, Monday data as day-1 data, week-4, Tuesday data as day-2 data,
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week-4, Friday data as day-3 data and week-6, Thursday data as day-4 data. These days are

nonconsecutive, comes from different weeks and each are of different weekday. We changed the

day marks of day-2 data, day-3 data, and day-4 data so that four days become consecutive days.
IV.ISA-IDS ARCHITECTURE

This section elaborates the ISA-IDS system architecture. Figure 1-2 sketches the system
architecture. It consists of one Centralized IDS Server (CIS) that collects the audit events from
the hosts that it is monitoring. We deploy an Event Data Collector (EDC) in each of the host
machines. The Event Data Collector collects the BSM audit data from the host and sends audit
events to the Central Event Collector (CEC) of the Centralized IDS server. The Central Event
Collector in turn sends them through the Event Dispatcher to the Individual Technique Servers
(ITS) that use different intrusion detection algorithms. Each Individual Technique Server
provides its response to the Centralized IDS Server by calculating the intrusion warning (IW)
level for that event. After getting back the results, the Centralized IDS Server fuses the different
IW levels from the Individual Technique Servers for the same event and produces a composite
IW level for that event.

The Centralized IDS Server acts like a centralized control center of the entire network
system. Its main tasks are the followings in order (Figure 1-3 shows the data flow diagram of thé
ISA-IDS):

1. Collect audit event data from the hosts through the Central Event Collector;
2. After data pre-processing, dispatch the audit event stream to the Individual Technique
Servers through the Event Dispatcher;

3. Collect the IW levels for events from the Individual Technique Servers;
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4. Fuse the IW levels and produce a composite binary IW level (1 for intrusive and O for

normal) for each event;

5. Label the input event as intrusive or normal according to the composite IW level and produce

“an alert signal if required.
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Figure 1-2. System architecture of the ISA-IDS.

Therefore, after deploying the Event Data Collectors in the host machines, setting up the
Centralized IDS Server and the Individual Technique Servers and starting to run the system, the
SSA only has to check the Centralized IDS Server from time to time for any possible intrusion
alert.

The SSA may have to manually inspect all the alarms raised by the ISA-IDS to figure out the
cause of the intrusion. Sometimes the ISA-IDS may produce a warning signal for an event that is

not in fact intrusive - this is an example of a false alarm. Sometimes the ISA-IDS may not
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produce a warning signal for an event that is in fact intrusive — this is an example of a miss. The

lower the false alarm rate and the miss rate, the better the ISA-IDS.
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Figure 1-3. Data flow diagram of the ISA-IDS.

At the beginning we need to train the Individual Technique Servers using the training
data. Initially, a training data set containing normal and intrusive activities, such as the 1998
DARPA-LL data, can be collected and used for training. After the initial training the system can
use the audit data collected from the hosts in the monitored information system. Since the
Individual Technique Servers have already been trained, they can produce intrusion labels for

each of the events in the event stream. During off-peak hours, say after midnight, the data
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collected during the day can be used for updating or retraining the system parameters of each of
the techniques inside Individual Technique Servers. The retraining can be scheduled per day, per
week or per month basis as desired by the system administrator. Currently the ISA-IDS prototype
usés the training part of the 1998 DARPA-LL audit data set to train the Individual Technique
Servers and labels the testing data set during testing.

For an Individual Technique Server supporting an anomaly detection technique, the
training of the technique requires only computer audit data of normal activities. Because each
audit record in the training data set of the 1998 DARPA-LL data can be labeled as normal or
intrusive, we can filter the training data set by its label so that we have computer audit data of
only normal activities to train this anomaly detection technique. For an Individual Technique
Server supporting a signature recognition technique, the training of the technique requires
computer audit data of both normal and intrusive activities. The training data set of the 1998
DARPA-LL data can be used directly ‘without filtering to train the technique. Details of the
Individual Technique Servers are provided in the following sections.

In an environment where there is an absence of data from sources where intrusions are
known and characterized, two approaches can be taken to train the Individual Technique Servers
for signature recognition techniques. In the first approach, the Individual Technique Servers for
signature recognition techniques in the ISA-IDS can be disabled at first. Therefore, the ISA-IDS
relies on the Individual Technique Servers to label incoming audit records. When intrusions are
detected, the Individual Technique Servers for signature recognition techniques can use the
labeled audit records to discover the signatures of those known intrusions and thus get trained. In

the second approach, because many intrusion scenarios that happened in the past are known,
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those intrusion scenarios can be simulated just as what LL did to create computer audit data of
intrusive activities. These two approaches can be used alone or together.

In the past few years we have investigated several techniques for intrusion detection
co{/éring both anomaly detection and signature recognition. The detailed description and
performance results of the techniques can be found in (Ye et al. 1, 2000; Ye et al. 2, 2000; Ye &
Li, 2000; Ye et al. 3, 2000; Ye, 2000). Four of these techniques have been incorporated into the
ISA-IDS prototype. The techniques are named - CANB for Canberra metric, CL for Clustering
algorithm, EWMV for Exponentially Weighted Moving Variance technique and X2 for Chi-
square test. These techniques and their implementétion are briefly described in the next section.

Since the amount of data to be processed is huge, and each of the techniques needs a
considerable amount of disk space and processing power we have used a separate machine for
each of the techniques. Therefore one technique corresponds to one Individual Techniqu¢ Server.
The Centralized IDS Server must have a very high processing power and very large amount of
disk space to store all the incoming events and results produced. Separating the techniques into
different Individual Technique Servers enables us to comfortably plug-in new kinds of intrusion
detection techniques with minor modification in the event dispatcher and fusion technique of the
Centralized IDS server. Note that if desired, the Centralized IDS Server and Individual

Technique Servers can reside on the same machine rather than on different machines.

V. PROTOTYPE IMPLEMENTATION AND INTRUSION DETECTION TECHNIQUES
In the prototype implementation we have used the 1998 DARPA-LL BSM audit data and
have not yet incorporated the host Event Data Collectors. Except the Event Data Collectors in the

hosts and the Central Event Collector in the Centralized IDS Server we have implemented all
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other components. We have implemented the Centralized IDS Server and the Individual
Technique Servers with Visual C++™ and for communication between them over the network
we have used the Orbix™ implementation of CORBA. Following CORBA standards, the
Individual Technique Servers have been implemented as CORBA servers and the Centralized
IDS Server has been implemented as a CORBA client. Thé Centralized IDS Server scans through
the BSM audit events and dispatches the event objects to the servers through the Event
Dispatcher by calling appropriate server services that the Individual Technique Servers
implement. All the Individual Technique Servers have been implemented in a uniform way so
that new Individual Technique Servers can be easily plugged in.

We can model the entire network as a system and the hosts that we are monitoring as
independent subsystems. Since the 1998 DARPA-LL MIT data contains BSM audit data only
from a single host machine with the Solaris operating system, there is currently only one
subsystem in the prototype. When there are audit data from a network of multiple host machines,
the ISA-IDS can also set up the system and multiple subsystems.

We have analyzed the incoming BSM audit events from two perspectives - “Event Type”
(Ye et al. 1, 2000; Ye et al. 2, 2000) and “Process Model” (Ye & Xu, 2000). Note that the SSA
can select either of the two methods to use for an information system. Figure 1-4 highlights the
difference between these two methods through the simplified class diagram of the prototype.

In the Event Type method, we look at the type and time of event occurrence and pass that
information to the Individual Technique Servers. We ignore other information related to that
event. This way of analysis is much simpler and faster but ignores details of each event. For

example, if the event is related to a file that a user is using, Event Type analysis does not care
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about which user is using which file. Its analysis is based entirely on the sequence of the type of

events.

According to Process Model, we look more into the events and find out whether each
evént is related to Login or File or User or any of the Daemon objects. An event can involve
more than one of these object classes. For example, if user A accesses file B - it corresponds to
an event related to a user object (A) and also to a file object (B). Therefore, the Process Model
method of data analysis not only considers the type of the event but also the actual source of the
event and gives more information to the Individual Technique Servers. It is more complex than

the Event Type, and therefore requires much more processing power.
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Figure 1-4. Simplified class diagram of the ISA-IDS.

In the Process Model method, depending on the objects (Daemon, File, Login, User)
associated to an event, we create those objects involved in the event. In the Event Type method,
we have only one type of object to create — the subsystem for the single host machine. After
filling up their attributes properly, the Event Dispatcher of the Centralized IDS Server sends

those objects to the Individual Technique Servers. Each Individual Technique Server scans its
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database looking for the previous occurrence of that object and retrieves its profile and sets the
Intrusion Warning (IW) level (0SIW<I, higher value indicates more intrusiveness) according to
the algorithm of that Individual Technique Server. The Individual Technique Server then returns
the object back to the Centralized IDS Server with the IW level filled in. After collecting the IW
levels from all the Individual Technique Servers, the Centralized IDS Server feeds these into the
fusion component to produce a composite IW level. If the level is 1, a signal is generated
notifying the SSA to take farther action. Figure 1-5 illustrates the procedures taken in the Process
Model method or the Event Type method to calculate the IW value.

The rest of the section describes the four Individual Technique Servers we have
incorporated - CANB, X2, EWMYV and CL.

Each object associated with an event has several attributes, which we refer as variables.
For example, in the Event Type.method, we have 284 event types and therefore there are 284
variables, numbered from 1 to 284. In the Process Model method, the number of variables
depends on the type of the objects (Daemon, File, Login, or User) associated with the event. We
have defined the variables for each of the objects after thoroughly studying the characteristics of
each object class.

The training consists of several phases, and is slightly different from one Individual
Technique Server to another, though they follow the same procedure. In phase I, the Event
Dispatcher of the Centralized IDS Server takes the events chronologically one by one and creates
associated objects and passes them to the Individual Technique Servers. For each event on each
object, an Individual Technique Server calculates an observation value of the variables for the
event on the object, updates the training parameters for the Individual Technique Server, and

stores the observed value (we refer to it as X value) and the training parameters. In phase II, the
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Individual Technique Server takes the X value stream and computes the T value according to the

equation of a specific technique along with the average and standard deviation of the T value

stream, if needed (for CANB, X2 and CL). The average and standard deviation of the T value

stream are used to determine the control limits of the T value for that technique.
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Figure 1-5. IW calculation in Process Model and Event Type methods.

In testing, the X vélue and the T value are computed for each audit event. The control
limits of the T value from phase II of the training are then used to transform the T value into the
IW value that indicates whether or not to signal an intrusion.

Now we briefly discuss the algorithm in each of the Individual Technique Servers during
training and testing. During testing only X values, T values and IW levels are calculated. All the
training parameters are calculated in training.

| The CANB is an anomaly detection technique. It builds a norm profile in training using
only audit data of normal activities. The norm profile is then used in testing to determine the IW
level of each audit event. During training and testing, the CANB technique uses the
Exponentially Weighted Moving Average (EWMA) method (Ryan, 2000) to compute an
observed value — the X value - for the event on an object. X is a vector consisting of multiple
variables. The observed value of a variable indicates the occurrence frequency of activity that the
variable represents. For example, in the Event Type method, the observed value of the 284
variables is computed for each audit event. The observed value of variable i represents the
occurrence frequency of event type i in the recent past. In training, only audit data of normal
activities are used to build the norm profile. In phase I of training, the X values for all the audit
events in the training data set and the mean vector of the X values for those audit events are
computed. Phase II goes over the X value stream from phase I, and transforms the X value for the
n™ event into the Canberra distance metric from the mean vector the X values to produce the T
value for this event. Hence, the T value measures the distance of the X value for this event to the

mean vector of X according to the Canberra distance definition. Meanwhile, the mean and
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standard deviation of the T values are updated incrementally by taking into account the 7 value
for this event. After the last event in the training data set, the incrementally updated mean and

standard deviation of the T values become the mean and standard deviation of the T values for all
the_ fraining data, T and St. This mean and standard deviation of the T values are used to
determine the control limits as follows: lf— CLF * ST,—T--F CLF * STJ which indicates the range of

the 7 values for normal acti;/ities, where CLF is a control limit factor, and is usually set to 2 or 3.

In testing, the X value and the T value are computed for each audit event. If the T\value
falls outside the range of the control limits (the range of normal activities), the IW level is set to
1 (a signal indicating an intrusion); otherwise, the IW level is less than 1 (no signal). The specific
IW level depends on how close the T value is to the center of the range of the control limits (how
close the T value is to the mean vector of 7).

The X2 technique is an anomaly detection technique similar to the CANB technique.
The two techniques differ only in the definition of the distance metric that is used to compute the
T value for an event. For the X2 technique, the chi-square distance metric is used.

Both the CANB technique and the X2 technique monitor the frequency distribution of
multiple variables (i.e., for various event types in the Event Type method) and detect anomalies
as intrusive. SSA can select either of the two techniques when running the ISA-IDS. Because
these two techniques are similar, there is no need to select both.

The EWMYV technique is an anomaly detection technique. It uses the Exponentially
Weighted Moving Variance technique to monitor the event intensity for an object. It is designed
to detect significant changes in the event intensity. Many denial-of-service intrusions manifest
through changes in the event intensity. The only information that the EWMYV technique uses of

each event is the time of event occurrence. Therefore the EWMYV technique uses only one
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variable for the X value and does not calculate the T value. The EWMYV technique uses a time
decaying method to calculate the observation value reflecting the intensity of events in the most
recent past (the frequency count of events per time unit). The exponentially weighted moving
avérage (EWMA) and the exponentially weighted moving variance (EWMV) are then calculated
to set the control limits as follows: [EWMA — CLF*EWMV, EWMA + CLF*EWMV].

In testing, the TW level is computed by comparing the observed event intensity with the
control limits. If the X value for an event falls outside the control limits, the IW level issetto 1 (a
signal for intrusion); otherwise, the IW level is less than 1 (no signal).

The CL technique is a signature recognition technique that learns intrusion signatures
from the training data of both normal and intrusive activities, and uses the learned signatures to
detect intrusions in testing. The CL technique employs a clustering and classification algorithm
to cluster audit events in the training data set and to classify each audit event in the testing data
set into normal or intrusive. The CL technique uses the same method of computing the
observation value — the X value — as in the CANB and X2 techniques. The variables associated
with an event are considered as dimensions. Hence, an observation is a data point in a multi-
dimensional space. In training, the CL technique groups data points in the training data set into
normal and intrusive clusters. In testing, the CL technique uses the cluster structure to determine
the IW level of an event by examining whether the observation value for the event is close to
normal clusters or intrusive clusters.

In the prototype of the ISA-IDS, we use either the X2 technique or the CANB technique
to fuse the IW levels from the Individual Technique Servers into a composite IW level. When
using the X2 technique or the CANB technique for information fusion, the IW levels from the

Individual Technique Servers produce the X value consisting of multiple variables for those
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individual Technique Servers respectively. That is, the information fusion is based on the norm
profile of the Individual Techniques Servers’ outputs for normal activities in training. In testing,
if the results from the Individual Te;chnique Servers for an event deviate significantly from the
norm profile, the information fusion technique produces a composite index triggering a signal for
intrusion; otherwise, no signal is produced from the information fusion technique for the overall
assessment of intrusion likelihood.

More details of the individual intrusion detection techniques and the information fusion
technique can be found in (Ye et al. 1, 2000; Ye et al. 2, 2000; Ye & Li, 2000; Ye et al. 3, 2000;
Ye, 2000).

In testing, the Event Dispatcher of the Centralized IDS Server scans through the data only
once. For each object associated with an event an Individual Technique Servers calculate
observation values for the variables of the object. From the observation values an Individual
Technique Server calculates the T value and then IW level (0< IW <1). The IW values calculated
by the Individual Technique Servers are fed into fusion to get the composite IW level (IW composite:
0 for normal, 1 for intrusive), which is used to label the testing data into normal or intrusive. The
training process is complex and requires several passes over the input event stream. Training
should be done periodically when requested or set by SSA.

Figure 1-6 presents the performance of the X2 technique based on the Receiver Operating
Characteristic (ROC) analysis of session signal ratio. The CANB technique is similar to the X2
technique. Hence, it is not tested. Figure 1-7 presents the performance of the CL technique based
on the Receiver Operating Characteristic (ROC) analysis of session signal ratio. The testing of

information fusion is still ongoing, and thereby is not presented here.
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ROC analyzes thé tradeoff between false alarm and hit rates for detection systems. A false
alarm is a signal on an event when in fact the event is normal. A false alarm rate is ratio of the
number of false alarms to the number of all the normai events in the testing data. A hit is a signal
on an event when in fact the event is intrusive. A hit rate is the ratio of the number of hits to the
number of all the intrusive events in the testing data. ROC was developed in the field of signal
detection (Egan, 1975; Swets, 1973). It has now become the standard approach to evaluate
detection systems. ROC curves for intrusion detection indicate how the hit rate changes as the
signal threshold varies to generate more or fewer false alarms to tradeoff detection accuracy
against analyst workload. Measuring the hit rate alone indicates only intrusions that an intrusion
detection system may detect, and it does. not indicate the human workload required to analyze
false alarms generated by the normal background traffic. A low false alarm rate with a high hit
rate means that the detection output can be trusted and human labor required to confirm any
detection is minimized. For a given signal threshold, a pair of a hit rate and a false alarm rate can
be computed. Hence, by varying the signal threshold, a curve (ROC curve) can be plotted. The
closer the ROC curve is to the top-left corner representing the 100% hit rate and the 0% false

alarm rate, the better the detection performance is.
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Figure 1-6. The performance of the X2 technique.
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Figure 1-7. The performance of the CL technique.
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Since intrusive events occur in sessions, we analyze the results in terms of session signal
ratio. We group the events according to sessions and count how many of the events inside a
session are signaled and we call the ratio of number of signals to number of events in a session as
session signal ratio. If it is an intrusive session then we expect a high session signal ratio. If it is a
normal session, we expect the session signal ratio to be low. In this paper we present the ROC
curves for the X2 technique and the CL technique using the session signal ratio as shown in
Figures 1-6 and 1-7.

The X2 technique achieves the 60% hit rate at the 0% false alarm rate. At the 2% false
alarm rate the hit rate of the X2 technique rises to 85%. The technique achieves the 100% hit rate
after the 10% false alarm rate. Therefore, the X2 technique produces good detection
performance.

When there is no false alarm produced by the CL technique, the hit rate reaches 53.5%. If
we want to limit the false alarm rate to no more than 10%, we get the 58.1% hit rate.

Hence, the X2 anomaly detection technique has better intrusion detection performance
than the CL signature recognition technique. This performance difference is expected because a
signature recognition technique can detect only known intrusions used in the training, whereas an
anomaly detection technique can detect both known and novel attacks if they demonstrate
significant deviations from normal behavior.

The report in (Lippmann et al., 2000) presents the performance of some other IDSs
evaluated. The performance evaluation of those IDSs is based on the whole set of the 1998
DARPA-LL training and testing data, whereas our training and testing of ISA-IDS are based on
only four-day data. Hence, we cannot draw conclusions with regard to the comparison of those

IDSs and ISA-IDS in their intrusion detection performance. If we simply examine the ROC
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curves of those IDSs and ISA-IDS, the X2 anomaly detection technique performs much better
than the anomaly detection techniques in those IDSs in (Lippmann et al., 2000). The CL
signature recognition does not perform as well as the best signature recognition technique in
those IDSs in (Lippmann et al., 2000). However, all the signature recognition techniques in those
IDSs in (Lippmann et al., 2000) uses some form of manual tuning (e.g., the manual input of
rules, and the manual selection of features) to achieve better performance, whereas the training of

our CL signature recognition technique was done automatically without any manual tuning.

VI. SUMMARY

In this chapter we have presented the architecture and implementation details of ISA-IDS
that is tested using the 1998 DARPA-LL audit data. During training it calculates the training
parameters for each of the techniques. During testing, for each audit event on each object ISA-
IDS applies a selective set of four intrusion detection techniques to find out the level of intrusion
and fuses them into a single IW value, O for normal and 1 for intrusive. In ISA-IDS, we
incorporate both a signature recognition technique and several anomaly detection techniques
along with an information fusion technique. The techniques in ISA-IDS are scalable to large
amounts of audit data, where many existing signature recognition techniques and anomaly
detection techniques cannot scale to large audit data in real time.

The ISA-IDS prototype currently uses the 1998 DARPA-LL BSM audit data for testing.
The data come from one single host machine. We can incorporate data from multiple host
machines as well. The Event Data Collector has to be developed and installed in each of the
hosts. The system currently uses off-line audit data. The testing can be run in real time, and the

training can be run periodically.
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Chapter 2: Attributes of System Activity Data for

Intrusion Detection

-~ This chapter presents various attributes of system activity data for intrusion detection.

These attributes are tested to examine their effectiveness for intrusion detection.

L. INTRODUCTION

Vulnerabilities and bugs of information systems are often exploited by malicious users to
intrude into information systems and compromise security (e.g., availability, integrity and
confidentiality) of information systems [2-1 — 2-10]. As information systems become
increasingly complex, vulnerabilities and bugs of information systems are inevitable for technical
and economic reasons. Hence, _the possibility of intrusions into information systems always
exists. In order to protect information systems, it is highly desirable to detect intrusive activities
while they are occurring in information éystems.

An information system consists of host machines and communication links between host
machines. Existing intrusion detection efforts [2-11 — 2-43] focus mainly on two sources of
activity data in an information system: network traffic data and computer audit data. Network
traffic data contain data packets traveling over communication links between host machines, and
thus capture activities over communication networks. Audit trail data capture activities occurring
on individual host machines. Activity data of an information system contain not only useful
information to uncover intrusive activities but also much irrelevant infofmation.

This chapter presents a series of studies performed at the Information and Systems

Assurance Laboratory of Arizona State University to reveal a few probabilistic properties of
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computer audit data that are important to intrusion detection. Intrusion detection techniques,
including decision tree, Hotelling’s T? test, chi-square multivariate test and Markov chain, are
used in these studies. Section II review attributes of activity data used in existing work on
intfusion detection. Section III generalizes probabilistic properties from attributes of activity data.
Sections IV describes computer audit data used in our studies, and presents these studies and

their results concerning probabilistic properties of activity data. Section V gives a conclusion.

II. ATTRIBUTES OF ACTIVITY DATA IN EXISTING WORK

There are two general approaches to detecting intrusions [2-11 — 2-43]: anomaly detection
(named behavior-based approach in some literature [2-11]) and pattern recognition (named
knowledge-based approach [2-11] or misuse detection [2-29] in some literature). Pattern
recognition techniques [2-11, 2-16 — 2-25] identify and store signature patterns of known
intrusions, match activities in an information system with known patterns of intrusion signatures,
and signal intrusions when there is a match. Pattern recognition techniques are efficient and
accurate in detecting known intrusions, but cannot detect novel intrusions whose signature

patterns are unknown.

Anomaly detection techniques establish a profile of a subject’s normal activities (a norm
profile), compare observed activities of the subject with its norm profile, and signal intrusions
when the subject’s observed activities differ largely from its norm profile [2-26 — 2-43]. The
subject may be a user, file, privileged program, host machine, or network. Denning [2-29]
provides a justification of the anomaly detection approach to intrusion detection. Anomaly

detection techniques can detect both novel and known attacks if they demonstrate large
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differences from the norm profile. Since anomaly detection techniques signal all anomalies as
intrusions, false alarms are expected when anomalies are caused by behavioral irregularity
instead of intrusions. Hence, pattern recognition techniques and anomaly detection techniques are

often used together to complement each other.

Existing efforts on intrusion detection have considered mainly the following attributes of

activities in information systems:

1) Occurrence of individual events, e.g., audit events, system calls, commands, error messages,

TP source address, and so on,
2) Frequency of individual events, e.g., number of consecutive password failures,
3) Duration of individual events, e.g., CPU time of a command, and duration of a connection,

4) Occurrence of multiple events combined through logical operators such as AND, OR and

NOT,
5) Frequency histogram (distribution) of multiple events, and
6) Sequence or transition of events.

Attributes 1, 2, 4 and 6 often appear in intrusion signatures that are represented in
manually coded rules [2-16 — 2-18] or automatjcally learned rules [2-19 — 2-22] in some pattern
recognition techniques. Attribute 6 appears in state transition diagrams [2-23 — 2-24] and colored
Petri nets [2-25] that are used in some pattern recognition techniques to represent intrusion

signatures.

Several anomaly detection techniques exist and differ in the representation of a norm

profile and the inference of a deviation from the norm profile. Specification-based anomaly
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detection techniques describe security policies and authorized activities of a well-defined subject
(e.g., a privileged program or a network server) in terms of formal logic and activity graph [2-26
— 2-28]. Statistical-based anomaly detection techniques build a statistical profile (e.g., statistical
disifibution) of a subject’s normal activities from historic data [2-29 — 2-33]. Anomaly detection
techniques based on regression [2-34] or artificial neural networks [2-35 — 2-36] learn from
historic data to predict the next event from a series of the past events. Anomaly detection
techniques based on immunology capture a large set of event sequences as the norm profile from
historic data of a subject’s normal activities, and use either negative selection or positive
selection algorithms to detect the difference of incoming event sequences from event sequences
in the norm profile [2-36 — 2-39]. There are also anomaly detection techniques that use a first-
order or high-order Markov model of event transitions to represent a norm profile [2-39 — 2-43].
A first-order model of event transitions assumes that the next event depends on only the last
event in the past. A higher-order Markov model of event transitions assumes that the next event

depends on multiple events in the past.

Specification-based anomaly detection techniques can readily incorporate attributes 1, 2,
4 and 6. Statistical-based anomaly detection techniques can build a statistical norm profile based
on attributes 2, 3 and 5. Attribute 6 is incorporated in anomaly detection techniques based on

regression, artificial neural networks, immunology, and Markov models.

Although attributes 1-6 appear in existing work on intrusion detection, it is not clear
which properties are critical to performance of intrusion detection for several reasons. First,
existing studies investigating different attributes often use different data sets, making the

comparison of activity data attributes difficult. Second, existing comparative studies using the
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same data set focus mainly on differences among various intrusion detection algorithms dealing

with the same attribute of activity data [2-39].

The following sections present generalized probabilistic properties of activity data and

our comparative studies on these probabilistic properties concerning their importance to intrusion

detection.

III. PROBABILISTIC PROPERTIES OF ACTIVITY DATA

Attributes 1-6 can be categorized into three grouﬁs: attributes 1, 2, 4 and 5 concerning the
frequency property of events, attribute 3 concerning the duration property of events, and attribute
6 concerning the ordering property of events. There may be other aspects of activity data that are
not represented by these three proiaerties. This paper focuses on only these three properties.

For the frequency property of events, we can use a set of random variables, (X1, ..., Xn),
to represent the frequency of n different types of events (e.g., commands, system calls or audit
events) for a given sequence of events. If we are interested in attributes 1 and 2 — single or
multiple occurrences of the i™ event type from a pool of n possible event types for a given
sequence of events, we examine the value of X; from the vector of (X, ..., Xn). A denial-of-
service attack may manifest through an unusually high frequency of a single event type. If we are
interested in attributes 4 and 5 — single or multiple occurrences of multiple events in
combination, we examine the multivariate frequency distribution of (Xj, ..., Xp).

For the duration property of events, we can use n sets, {Xi}, ..., {Xa}, to represent the

duration values of  different event types for a given sequence of events, where each set contains
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duration values of events of a certain type. Considering the execution of a program as an event,
the duration of this event is the program execution time. A Trojan Horse program may manifest
through a change in the program execution time.

- For the ordering property of events, (Xi, ..., X;) gives a time-series representation of a
given event sequence, where X, denotes an event occurring at time t. To take into account the
ordering of events, complex data models are usually required, as demonstrated by a number of
studies [2-34 — 2-43]. These complex data models demand for computationally intensive learning
and/or inference procedures that are not scalable to mountains of activity data from an
information system. An information system, even as small as a host machine, usually produces
Jarge amounts of activity data at a high frequency regardless of whether there are users’
applicaﬁon processes in the information system. The large computational overhead associated
with the ordering property raises a question: is the ordering property of events necessary for
intrusion detection?

Note that the vector representation of the frequency property can be derived from the set
representation of the duration property and from the times-series representation of the ordering
property. An intrusion typically consists of a series of events in an information system. The
vector representation of the frequency property contains the least amount of information about
the given series of events among the representations of the three properties. However, the
frequency distribution of multiple event types still provides information about the collective
activity level of these event types. To answer the question on the order property, we can answer
another question: is the frequency property sufficient for intrusion detection? If the frequency
property of multiple event types for a given sequence of events is sufficient to produce good

intrusion detection performance, another question follows: can intrusion detection be stateless, in
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other words, is a single event at a given time sufficient to detect intrusions? Section IV presents a

series of studies to answer these questions.

IV. COMPARATIVE STUDIES
Our studies use various probabilistic techniques to detect intrusions, including decision
tree, Hotelling’s T2 test, “chi-square multivariate test and Markov chain, because different
properties of activity data require different data models. Decision tree is a data mining technique
that we use here as a pattern recognition technique. The other techniques are anomaly detection
techniques. Before we present these studies, we first describe computer audit data used in these

studies.

A. Training and Testing Data

An anomaly detection technique requires data of only normal activities in an information
system to build a norm profile. Data of both normal activities and intrusive activities in an
information system are required to learn intrusion signatures for a pattern recognition technique.
The testing data should contain data of both normal activities and intrusive activities to test the
performance of intrusion detection.

We use computer audit data from a Sun SPARC workstation with the Solaris operating
system, and focus on intrusions into a host machine that leave trails in computer audit data. The
Solaris operating system from the Sun Microsystems Inc. has a security extension, called the
Basic Security Module (BSM). BSM supports the monitoring of activities on a host machine by

recording security-relevant events. BSM auditable events fall into two categories: kernel events
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and user-level events. Kernel events are generated by system calls to the kernel of the Solaris
operation system. User-level events are generated by application software.

There are more than 250 different types of BSM auditable events, depending on the
version of the Solaris operating system. Since there are about 284 different types of BSM audit
events on our host machine, we consider 284 event types in our studies. An BSM audit record for
each event contains a variety of information, including the event type, user ID, group ID, process
ID, session ID, the system object accessed, etc. In our studies, we extract and use only the event
type, because many existing studies [26-43] use only the type of events and produce good
intrusion detection performance. Hence, activities on a host machine are captured through a
stream of audit events, each of which is characterized by the event type.

A sample of computer audit data of normal activities is downloaded from the MIT
(Massachusetts Institute - of Technology) Lincoln Lab at
http://ideval.ll.mit.edu/1998/1998_index.html. At this web site, four sets of data are provided:
sample data, four-hour subset of training data, seven weeks of training data, and two weeks of
testing data. We download the sample data which contain audit data of both normal and intrusive
activities. These audit data of normal activities are generated by the MIT Lincoln Lab through
simulating activities in a real information system used by the US Air Force. Intrusions are
simulated on the background of normal activities. Because intrusive activities in this small
sample data are very limited, we use audit data of normal activities only from this sample data.

According to the provided description of the starting and ending times of attack activities,
we obtain a block of audit data for the period when no attack activities occur. This block of audit
data containing a stream of 3019 audit events [2>—12]. These audit data of normal activities is

divided into two different parts: the first 1613 audit events and the remaining 1406 audit events.
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The first part, consisting of 1613 audit events, is included in the training data set as the computer
audit data of normal activities. The second part, consisting of 1406 audit events, is included in
the testing data set as the computer audit data for normal activities.

N Computer audit data of intrusive activities are generated in our laboratory by simulating
15 intrusion scenarios that we have collected over years from various information sources. Table
2-1 gives the description of these intrusion scenarios. These intrusion scenarios are simulated in a
random order. A student manually runs these intrusion scenarios on a Sun SPARC workstation
with the same version of the Solaris operating system as the Solaris operating system that is used
to generate audit data at the MIT Lincoln Laboratory, while the auditing facility is turned on.
These intrusion scenarios generate a stream of 1751 audit events. The first 526 audit events
produced from the first 8 intrusion scenarios are included in the training data set as the computer
audit data of intrusive acltivities. The remaining 1225 audit events from the remaining 7 intrusion
scenarios are included in the testing data set as the computer audit data of intrusive activities.

Hence, the training data set contains 1613 audit events of normal activities and 526 audit
events of intrusive activities. The testing data contains 1406 audit events of normal activities and
1225 audit events of intrusive activities. Although audit data of normal activities and audit data
of intrusive activities come from different host machines, the same Solaris operating system on
these host machines produces the consistent information about event types. Since only the event

type is extracted from each audit record, putting together audit data from different host machines

in the training data set and the testing set does not become a concern in this study.

Table 2-1. Description of intrusion scenarios used in the study.

I Scenario | Description of intrusive activities J
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Number

Link the printer driver to a user program, and then execute the printing program.
Before the printing program completes the job, replace the link with reference to
the user program, in order to bypass the security check and let the user program
obtain the same priority of the printing program.

Use the command of rcp to copy the password file from a remote host

Link the password file with the dead.letter. The dead.letter is created by the system
when there are dead (return) mails. The system has the “write” right on the
password file, which makes it possible for the user to change the password file
through the dead mails.

Edit the .rhost file in order to remotely access the host later.

Attempt to edit and view the password file.

Execute a binary executable code that needs /dev/ttyb as an argument.

Attempt to login, but fail three times

(e REN e WLV, § N N

Link the password file with a temporal log file that system could generate, in order
to overwrite the password file later.

Use the command of Ip to print a linked long file. Before the printing job is done,
replace the link with reference to the password file, in order to print the password

file.

10

Use the command of rlogin to login on a remote host without a password, provided
that the account is in the .login file and the on the .rhosts file on the host.

11

Use the command of finger to get sensitive information from a remote host.

12

Link a user file to a system-generated file.

13

Move system files for creating an executable file under the system directory to
make a regular user become the root user.

14

Use the command of rsh to view and edit the password file in a remote server.

15

Link the shadow password file to a temporal log file that system could generate, in
order to overwrite the password file later.

The same set of training data and the same set of testing data are used by each intrusion

detection technique in our studies. Although the training data set contains computer audit data of

both normal activities and intrusive activities, an anomaly detection technique uses only

computer audit data of normal activities to build a norm profile. A pattern recognition technique

uses computer audit data of both normal activities and intrusive activities in the training data set

to learn intrusion signatures. Each intrusion detection technique is tested using the entire set of
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the testing data, containing computer audit data of both normal activities and intrusive activities.
The training and the testing of each intrusion detection technique are performed off-line using
one file of the training data set and another file of the testing data set respectively.
B. Decision Tree and Results

There are two kinds of variables in a decision tree. One is target variable or class, and the
other is predictor variable. A data point in the training data set contains the values of both
predictor variables and a target variable. That is, the training data are labeled by the target values.
A data point in the testing data set contains the values of only predictor variables. After testing,
each data point in the testing data is assigned a target value and classified by the target value.

During training, a decision tree is constructed by recursively partitioning data points in
the training data set into branches according to values of predictor variables until a stopping
criterion is met [2-44 — 2-47]. Each branch contains a subset of data points with less
inconsistency with respect to their target values. A common stopping criterion for a branch is that
all data points in the branch have the same target value, which then produces -a leaf in the
decision tree. During testing, a data point is passed through the decision tree to reach a leaf
according to its values of predictor variables, and is assigned the target value of this leaf.

Decision tree is used as a pattern recognition technique in our studies to construct a
decision tree from the training data and to classify the testing data. Each data point in the training
data set is labeled by the value of the target variable to indicate whether it is normal or intrusive.

A normal data point has O as the target value. An intrusive data point has 1 as the target value.

After training, each path from the root to a leaf of the decision tree represents a pattern of

2

activities. We assign an Indications and Warning (IW) value to each leaf in the decision tree to
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indicate the likelihood of intrusion. The IW value for a leaf is computed by averaging the target
values of the training examples in that leaf. The higher the IW value, the more likely the leaf
represents intrusive activities. During testing, a data point is classified into a leaf according to the
values of its predictor variables, and takes the IW value of the leaf.

We use the CHAID (Chi-squared Automatic Interaction Detector) decision tree algorithm
in the AnswerTree 2.0 software from SPSS [2-48] for learning a decision tree from our training
data. The CHAID algorithm uses chi-square statistics to identify optimal partitions. Details of our
implementation can be found in [2-49].

| To answer the question on whether a single event is sufficient to detect intrusions, we
develop two different representations of predictor variables: a single-event representation and a
frequency distribution representation. The single-event representation considers only a single
event at a given time. The frequency distribution representation considers the frequencies of

multiple event types within a given sequence of events.

In the single-event representation, there is only one predictor variable, X, with a value
corresponding to the event type at a given time. Since there are 284 possible event types, the
predictor variable can take one of 284 possible values.

In the frequency distribution representation, there are 284 predictor variables, (Xi, Xz, ...,
Xos4), for 284 event types respectively. The value for each of 284 predictor variables represents
the frequency of an event type within a given sequence of audit events. We use the exponentially
weighted moving average method [2-50] to compute the value of X;, that is, the frequency of the
i™ event type in a sequence of audit events in the recent past.

Xi{t)=A*1+(1—-A)* X{t —1) if the current event — event ¢ - belongs to the i"eventtype  (4)

Xi{t)=A*0+(1- A)* Xz —1) if the current event - event £ - is different from the i™ event type
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where X;(t) is the observed value of the i™ variable in the vector of an observation (X;, Xo, ...,

Xog4) for the current event - event ¢, A is a smoothing constant that determines the decay rate, and

By using the exponentially weighted moving average method, more recent observations
receive larger weights in the frequency computation. For example, the observation at the current
event — event t - receives a weight of A, the (t—l)th observation receives a weight of A(1-)A), and
the (t-k)™ observation receives a weight of A(1-M)*. An observation is made at each event.

In our studies, we let A be 0.3 - a commonly used value for the smoothing constant [2-
48). Figure 2-1 shows the decay effect of the smoothing constant 0.3. We can see from Figure 2-
1 that after the (t-14)'h observation (k=14) the weight drops close to zero. That is, the frequency
value of X;(t) at the current event — event ¢ - takes into account about the past 15 audit events (k =

0, ..., 14). We initialize X;(0) toO fori=1, ..., 284.

0.35
0.3
0.25
0.2
0.15

weight

0.1
0.05

Figure 2-1. The decay effect of the smoothing constant 0.3.

55




If we take a real time unit (e.g., second) for ¢ in X;(t), the frequency distribution
representation can convey not only the relative frequency distribution of 284 audit events in a
stream of audit events for a given timeframe, but also the intensity of individual events for that
timeframe. However, the intensity of activities in an information system has large variations over
time, e.g., from day to night. At night, there may be little activities in the information system.
Inactive periods do not give us accurate estimates of the relative frequency distribution of audit
events. Hence, we have separate studies on the intensity of individual events and the relative
frequency distribution of multiple events. Another paper reports our intrusion detection work that
examines the intensity of individual events for a given timeframe [2-51]. This paper focuses on
the relative frequency distribution of 284 audit events within a given sequence of events by
making an observation at every event rather than every time unit.

To accurately capture the relative frequency distribution of 284 audit events, we number
only time points when audit events are Qbserved in the frequency distributi‘on representation. For
example, given the following stream of audit events, we number them 1, 2, 3, ... for time

t=0, 1, 2, 3,

EventType3, EventType8, EventTypel, ......

For each audit event in the training data and the testing data, we obtain an observation
vector of (X, ..., Xas4). For the above example, at t = 0, all variables in the vector of (Xj, ...,
X,84) have a value of 0. At time t = 1, X3 has a value of 0.3 (=0.3*1+0.7*0), and all other
variables have a value of 0. At time t = 2, X3 has a value of 0.21 (=0.3*0+0.7*0.3), X3 has a
value of 0.3 (=0.3*1+0.7*0), and all other variables have a value of 0. At t = 3, X3 has a value of
0.147 (=0.3*0+0.7*0.21), Xg has a value of 0.21 (=0.3*0+0.7*0.3), X; has a value of 0.3

(=0.3*1+0.7*0), and all other variables have a value of 0.
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Using the single-event representation, we obtain 1613 data points for normal audit events
and 526 data points for intrusive audit events in the praining data set. Each data point contains the
value of a predictor variable, X, and a target value. Using such training data, the CHAID
algorithm produces a decision tree, called the single-event decision tree (SEDT). SEDT is then
used to obtain an IW value for each of 1406 data points for normal audit events and 1225 data
points for intrusive data events in the testing data set. Figure 2-2 shows the ROC (Receiver

Operator Characteristic) curve of the SEDT testing results.

ROC Curves for SEDT and FDDT

—e—ROC for FDDT
—— ROC for SEDT

Hit rate

0 0.2 0.4 0.6 0.8 1

False alarm rate

Figure 2-2. ROC curves of decision trees.

Each point in an ROC curve indicates a pair of the hit rate and the false alarm rate for a
signal threshold. For example, if the signal threshold for the IW values of the testing data is set to
0.5, we signal a testing data point whose IW value is greater than or equal to 0.5 as intrusive.
There are no signals on testing data points whose IW values are less than 0.5. If there is a signal

on a data point for an intrusive event in the testing data, this is a hit. If there is a signal on a data
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point for a normal event in the testing data, this is a false alarm. The hit rate is computed from
dividing the total number of hits by the total number of intrusive events in the testing data. The
false alarm rate is computed from dividing the total number of false alarms by the total number
of normal events in the testing data. By varying the value of the signal threshold, we obtain an
ROC curve. The closer the ROC is to the top-left corner (representing 100% hit rate and 0% false
alarm rate) of the chart, the better detection performance the intrusion detection technique yields.

Using the frequency distribution representation, we also obtain 1613 data points for
normal audit events and 526 data points for intrusive audit events in the training data set. Each
data point contains an observation vector (Xi, Xa, ..., X284) and a target value. Using such
training data, the CHAID algorithm produces a decision tree, called the frequency-distribution
decision tree (FDDT). FDDT is then used to obtain an IW value for each of 1406 data points for
normal audit events and 1225 data points for intrusive data events in the testing data set. The
ROC curve of the FDDT testing results is shown in Figure 2-2.

The ROC curves from the SEDT testing results and the FDDT testing results reveal much
better intrusion detection performance of FDDT than that of SEDT. In fact, the intrusion
detection performance of SEDT is poor. For SEDT a hit rate of 81.5% brings up the false alarm
rate to 60.9%, whereas for FDDT a hit rate of 88.1% brings up the false alarm rate to only 4.6%.
Hence, the relative frequency of multiple event types within a given sequence of events gives a
great advantage to intrusion detection. In other words, the frequency property of activity daté is
necessary for intrusion detection. Since a single event is not sufficient to produce good intrusion
detection performance, stateless intrusion detection is not recommended.

Decision tree is a pattern recognition technique in which the learning of intrusion

signatures requires both normal audit data and intrusive audit data. The importance of the
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frequency property of activity data to intrusion detection is further verified below through two
anomaly detection techniques (Hotelling’s T2 test and chi-square multivariate test) that use only
normal audit data for training.

C. Hotelling’s T? Test, Chi-square Multivariate Test and Results

Hotelling’s T? test-is a multivariate statistical process control technique that detects

anomalies in a process of a system. Let X = (X, X», ..., X;,) denote an observation of p variables

from a process at time z. Using a data sample of size n, the sample mean vector X and the sample

variance-covariance matrix S of p variables are determined as follows [2-52]:

X = (X1, X2,..., Xp) (2-1)

S= Lli(Xi ~X)(Xi-X)'. (2-2)
n—

i=1

Hotelling’s T2 statistic for an observatior’l,.X, is determined as follows [2-52]:

T? = (X-X)yS1(X-X). (2-3)
A large computed value of T2 indicates a large deviation of the observation X from the in-control
population. Details of Hotelling’s T? test and its application to intrusion detection can be found
in [2-53].

When we apply Hotelling’s T? test to intrusion detection, we use the same training data
and the same testing data as those in decision tree studies, except that only audit events of normal
activities are used for training a norm profile for Hotelling’s T? test. Since only 11 event types
actually appear in the training data set of 1613 audit events, the vector X of (X1, X, ..., X284) 18
reduced into a vector X with only eleven variables for the eleven event types respectively. We

perform the training and the testing for Hotelling’s T? test using the vector X with only 11
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variables. That is, using 1613 data points of X with 11 variables for normal audit events in the

training date set, we compute X and S in formulas (2-1) and (2-2) which fully describe the norm

profile.
Using X and S, the T? value in formula (2-3) is then computed for each data point in the
testing data set. The computed T? value is small if the data point conforms to the norm profile.

The ROC curve for the testing results of Hotelling’s T? test is plotted using various signal

thresholds on the values of the computed T? value for the testing data points, as shown in Figure

2-3.

ROC Curves of Anomaly Detection Techniques

—e— ROC for Hotelling's T2 test
~#— ROC for chi-square test
—a&— ROC for Markov chain

Hit Rate

0 0.2 0.4 0.6 0.8 1
False Alarm Rate

Figure 2-3. ROC curves of anomaly detection techniques.

With both the mean vector X and the variance-covariance matrix S, Hotelling’s T 2 test
provides a complete data model of multivariate data X in the frequency-distribution
representation of the frequency property. Hotelling’s T2 test detects both mean shifts and counter-

relationships in a multivariate manner. However, Hotelling’s T? test is computationally intensive,
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requiring large memory to store the variance-covariance matrix and much computation time to
compute the matrix and its inverse. It is not scalable to large amounts of computer audit data
produced by an information system in real time.

Hence, we develop the chi-square multivariate test with less computational overhead. The
test statistic for the chi-square multivariate test is: .

p

X2 = z}ﬁgg)_ (2-4)

In contrast to the T2 test statistic, the X2 test statistic does not account for the correlated structure
of the p variables. With only the mean vector X in formula (2-4), the chi-square multivariate test
detects only the mean shift on one or more of the p variables. Details of the chi-square
multivariate test and its application to intrusion detection can be found in [2-54].

When we apply the chi-square multivariate test to intrusion detection, we use the same

training data and the same testing data as those for Hotelling’s T2 test. Using 1613 data points of

(X1, Xa, ..., Xo84) for normal audit events in the training date set, we compute X which
characterizes the norm profile. For each of those event types that do not appear in the training

data set, we let the average of the variable for that event type take a very small value, 107 in this

study, at the end of training such that the denominators in formula (2-4) are not zero. Using X,
the X2 value in formula (2-4) is then computed for each data point of (X1, Xp, ..., X284) in the
testing data set. The computed X* value is small if the data point conforms to the norm profile.
The ROC curve for the testing results of the chi-square multivariate test is plotted using various
signal thresholds on the computed X* values for the testing data points, as shown in Figure 2-3.
The .comparison of the ROC curves for Hotelling’s T* test and the chi-square multivariate

test reveals better intrusion detection performance of the chi-squared multivariate test than that of
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Hotelling’s T* test. While the chi-square multivariate test detects mainly mean shifts, Hotelling’s
T? test detects both mean shifts and counter-relationships. In fact, Hotelling’s T test is more
sensitive to counter-relationships than mean shifts because the T? test statistic is determined
laréély by the correlated structure of variables (variance-covariance matrix) [2-53]. Hence, the
better intrusion detection performance of the chi-square multivariate test than Hotelling’s T test
indicates that mean shifts may be more important to intrusion detection than counter-
relationships.

The ROC curves for Hotelling’s T? test and the chi-square multivariate test show better
intrusion detection performance of these two anomaly detection techniques than performance of
the decision tree based on the single-event representation, even though these two anomaly
detection techniques use less data (only normal audit events) during training. This confirms the

importance of the frequency property of activity data.

D. Markov Chain and Results

We apply a Markov mode] that tékes into account the ordering property of multiple
events for intrusion detection. The application of a Markov model helps answer the question
about whether the ordering property of activity data provides additional advantage to intrusion
detection, or whether we can detect intrusions from only the frequency property of activity data
without the ordering property. Since first-order and high-order Markov models produce
comparable intrusion detection performance [2-40 — 2-43], we apply Markov chain ~ a first-order
Markov model that considers only one-step event transitions.

Let X, be the value of a random variable or the state of a system at time . A Markov

chain is a stochastic process with the following assumptions [2-55 — 2-56]:

62




PXisi=i+ 1l Xe=i,Xi-1=bir-1,..., Xo=1i0) = P(Xr +1=ir+11 Xe =1r) , and (2-5)

PXiv1=b+1l Xe=i)=P(Xe+1= jl Xe =1) = py, (2-6)
for all  and all states, where pj; is the probability that the system is in a state j at time t+1 given
the“s;ystem is in state t at time t. Formula (2-5) states that the probability distribution of the state

at.time t+/ depends on the state at time ¢, and does not depend on the previous states leading to

the state at time z. Formula (2-6) specifies that a state transition from time ¢ to time #+1/ is
independent of time.
If the system has a finite number of states, 1, 2, ..., s, the Markov chain model can be

defined by a transition probability matrix [2-55 — 2-56]:

pu  pi -+ Ppis
P _ 17:21 p:22 . . p.2s , (2_7)
Dst1 Ds2 e Pss |-

and an initial probability distribution:
0=l ¢ - ql, 2-8)

where q; is the probability that the system is in state i at time 0, and

J=s

Z pi=1. (2-9)

j=1
The probability that a sequence of states X, ..., X; at time #-k, ..., ¢ occurs in the context of the

Markov chain model is computed as follows [2-55 — 2-56]:

1
P(Xe-t,+, X)=gu-s] [ Pr-s-io (2-10)

i=k
In this study, the transition probability matrix and the initial probability distribution of a

Markov chain model are learned from the training data that provide observations of the system
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state Xo, X1, X, ..., Xn.1 at time t = 0, ..., N-1. The transition probability matrix and the initial

probability distribution are computed from the training data as follows [2-47]:

Nij
= 2-11
~ Py Ni. ( )
Ni
;= —— » 2-12
g N ( )

where

Nj; is the number of observation pairs X and X,; with X, in state i and Xy, in state j,

N; is the number of observation pairs X and X, with X, in state i and X1 in any one of

the states 1, ..., s,

Ni is the number of Xt’s in state i, and

N is the total number of observations.

When we apply the Markov chain to intrusion detection, we use the same training data
and the same testing data as those for Hotelling’s T? test and the chi-square multivariate test. We
numbers only time points when audit events occur for time £ X has 284 possible states
representing 284 possible event events at time £.

Using the stream of 1613 audit events for normal audit events in the training date set, we
compute the transition probability matrix P and the initial probability distribution Q according to
formulas (2-7) and (2-8) which characterize the norm profile. Using P and Q, we compute the
probability that a sequence of the past 15 audit events at time ¢ in the testing data, Xe1s, ..., X4,

occurs in the context of the Markov chain model as follows:

1
P(Xi-14,, %) = gu-u] [ Pr- oo (2-13)

i=14
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Recall that Hotelling’s T2 test and the chi-square multivariate test compute the test statistic based
on the past 15 audit events when the smoothing factor is set to 0.3.

The higher probability we obtain from formula (2-13) for an event sequence, the more
likely the event sequence is normal. An intrusive event sequence is expected to receive a low
probability of support from the Markov chain model of the norm profile.

We assign a small probability of 107 to initial states and state transitions in the testing
data if they have a zero probability value in the transition probability matrix P and the initial
probability distribution Q, so that the final result from formula (2-13) is not zero. Details of the
implementation can be found in [2-57].

The ROC curve for the testing results of the Markov chain is plotted using various signal
thresholds on the computed probability values for event sequences in the testing data, as shown
in Figure 2-3. |

We compare the ROC curve for the Markov chain based on the ordering property of
activity data with the ROC curves for Hotelling’s T? test and the chi-square multivariate test
based on the frequency property of activity data. The comparison reveals slightly better
performance of the Markov chain. This indicates that the ordering property of activity data
provides some additional advantage than the frequency property to intrusion detection, even

using a simple first-order Markov model that considers only one-step event transitions.

V. CONCLUSION
From existing work on intrusion detection, we generalize three properties of activity data
in an information system: the frequency property, the duration property and the ordering

property. Through a series of studies using the same training data and the same testing data, we
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provide answers to several questions concerning which properties are necessary to intrusion
detection. Our studies show that the frequency property of multiple event types for a given
sequence of events is necessary for intrusion detection. A single event at a given time is not
sufficient for intrusion detection. Second, the ordering property provides additional advantage
than the frequency property to intrusion detection.

Note that intrusive -audit data in our studies are “pure” data without white noises from
normal activities. Intrusions usually occur in an information system while normal activities are
also occurring in the information system. Hence, in real time intrusive audit data are mixed with
white noises of normal audit data. For such noisy data, the first-order Markov model of one-step
event transitions may not produce good intrusion detection performance. For noisy data, high-
order Markov model or event more complex data models may be warranted, which challenges us
with the scalability problem of these complex data models. Since the two anomaly detection
techniques (Hotelling’s T? test and th¢ chi-square multivariate test) based on the frequency
property provide rather good intrusion detection performance, the frequency property provides a
viable tradeoff between computational complexity and intrusion detection performance. When
using the frequency property for intrusion detection, a complete data model as in Hotelling’s T?
test detecting both mean shifts and counter-relationships may not be necessary. A simplified data
model as in the chi-square multivariate test detecting only multivariate mean shifts may be
sufficient. Further studies of these properties of activity data using large amounts of noisy

computer audit data are currently ongoing in our laboratory, and will be presented in future

reports.
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Chapter 3 An Anomaly Detection Technique Based on a Chi-square

Distance Metric for Intrusion Detection

-- In this chapter, we give the details of an anomaly detection technique based on a Chi-
square distance metric for intrusion detection. The testing results of this Statistical Process

Control (SPC) technique are presented.

I. INTRODUCTION

An intrusion into an information system compromises the security (e.g., availability,
integrity, and confidentiality) of the information system through a series of events in the
information system [3-1 — 3-4]. For example, a denial-of-service intrusion compromises the
availability of an information system by flooding a server in the information system with an
overwhelming number of servicé requests to the server over a short period of time, and thus
denies or degrades ‘the service to legitimate users. Another intrusion may compromise the
integrity and confidentiality of an information system by gaining root privileges and then
modifying and stealing information in the information system.

As we increasingly rely on information systems to support critical operations in defense,
banking, telecommunication, transportation, electric power and many other systems, intrusions
into information systems have become a significant threat to our society with potentially severe
consequences. Layers of defense can be set up against intrusions through prevention, detection,
reaction, and so on. Some examples of intrusion prevention techniques are firewalls and guards,
authentication, and encryption. Intrusion detection identifies intrusions being leaked through the

fence of prevention and acting on an information system.
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This chapter presents an intrusion detection technique based on a chi-square test statistic.
The rational for developing this technique is first presented after reviewing existing intrusion
detection techniques. Then the technique is described, and an intrusion detection application is

defined. Finally the results of testing the technique are presented and discussed.

II. REVIEW OF-EXISTING INTRUSION DETECTION TECHNIQUES
Existing intrusion detection techniqueé fall in two major categqries: signature recognition
and signature recognition [3-5 — 3-12]. Signature recognition techniques [3-4, 3-5, 3-9] store the
sigflatures of known intrusion scenarios, match the observed behavior with these intrusion
signatures, and signal an intrusion when there is a match. Signature recognition techniques have

a limitation in that they cannot detect novel attacks whose signatures are unknown.

The limitation of signature recognition techniques can be overcome by using anomaly
detection techniques as a complement. For a subject (user, file, privileged program, host
machine, computer network, etc.) of interest, anomaly detection techniques [3-6 — 3-12] establish
a profile of the subject’s normal behavior (norm profile), compare the observed behavior of the
subject with its norm profile, and signal an intrusion when the subject’s observed behavior
departs from its norm profile. Hence, anomaly detection techniques can detect both known and

novel intrusions if they demonstrate departures from a norm profile.

Intrusive behavior often shows departures (anomalies) from normal behavior in an
information system. For example, in a denial-of-service intrusion through flooding a server, the
intensity of events to the server is much higher than the event intensity in a normal operation

condition. In an intrusion through gaining root privileges, actions that an intruder takes to get into
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the information system and maneuver inside the information system are often different from

actions of legitimate users in a normal operation condition. Hence, anomalies can be used to

detect possible intrusions.

In the existing anomaly detection techniques, a norm profile is specified in one of the
following forms: strings [3-7], formal logic [3—8j, production rules [3-9], and statistical
distributions [3-10 - 3-12];\ Forrest and her colleagues [3-7] simulate the human immune system
and model the norm profile of a subject as a set of binary strings. For a set of normal strings (self
strings), a set of detector strings is constructed so that detector strings do not match self strings. If
an incoming string matches any of the detector strings for at least the r number of contiguous
bits, the detection of an anomaly (a foreign object or non-self) is declared. The string-based
anomaly detection technique has been applied to detecting anomalous sequences of system calls
to the kernel of a UNIX system. However, this technique has several drawbacks. First, there may
exist some nonself strings for which it is impossible to generate detector strings. This issue still
remains to be resolved [3-7]. Second, this technique is not robust to noises. Noises in a self string
could lead to a match between the self string and one of the detector strings, causing a false
alarm. Noises in a non-self string could make the string not matched to any of detector strings,
causing a miss. The sensitivity to noises depends heavily on the parameter r. On one hand, a
small r increases the rate of false alarms. On the other hand, a large r increases the rate of misses.

Currently, the parameter r is determined empirically.

The logic-based anomaly detection technique [3-8] has been applied to routers, Domain
Name System, and some privileged programs. However, formal logic is difficult for most system

administrators to understand and use for specifying a norm profile. In contrast, production rules
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in expert systems [3-9] are more natural and understandable than formal logic for most system

administrators to specify and update a norm profile. .

Both logic- and rule-based anomaly detection techniques have a limitation. It is difficult
to enumerate and specify all possibilities of normal behavior, especially when multiple subjects
(e.g., objects and actions in an information system) are involved. Moreover, the behavior of a

subject such as a user is geﬁerally not fixed but dynamically changing. It is difficult to specify the

dynamically changing behavior in advance using formal logic or production rules.

In the IDES/NIDES systems [3-10 — 3-12], a statistical-based anomaly detection
technique is used to represent the expected normal behavior of a subject and variance due to
noises. The statistical-based anomaly detection technique overcomes the problems with the
string-based, logic-based and rule-based anomaly detection technique in handling noises and
variances. However, the statistical technique in IDES/NIDES is a univariate technique that is
applied to only one behavior measure, whereas many intrusions involve multiple subjects and
multiple actions having impact on multiple behavior measures. Hence, a multivariate anomaly

detection technique is needed for intrusion detection.

III. A MULTIVARIATE STATISTICAL TECHNIQUE
Multivariate process control techniques [3-13], such as Hotelling’s T? [3-14], multivariate
cumulative sum (MCUSUM) [3-15], and multivariate exponentially weighted moving average
(MEWMA) [3-16], are typically used to monitor and detect anomalies of a process in a
manufacturing system. Theoretically, these multivariate process control techniques can be

applied to intrusion detection for monitoring and detect anomalies of a process in an information
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system. Practically, the computationally intensive procedure of these multivariate process control
techniques cannot meet the demand of intrusion detection for several reasons. ‘First, intrusion
detection must deal with large volumes of high-dimensional process data due to a large number
(e.g., hundreds or thousands) of behavior measures and a high frequency of event occurrence.
Second, intrusion detection requires a minimum delay of processing each event in an information

system to ensure an early indication and warning of intrusions.

For example, let us consider the computational procedure of Hotelling’s T2 Let X; = (Xi1,
Xi, ..., Xip)’ denote an observation of p measures from a process at time i. Assume that when the
process is operating normally (in control), the population of X follows a multivariate normal
distribution with the mean vector W and the covariance matrix ».. Using a data sample of size n,
the sample mean vector X and the sample covariance matrix S are usually used to estimate . and
2. [3-13], where

X = (X3, Xa,..., Xo) ' (3-1)

S= LIZ“:(Xi ~X)(Xi-X)'. (3-2)
n—

i=l
Hotelling’s T? statistic for an observation X; is determined by the following [3-13}:
T? = (Xi-X)'S7 (Xi- X). (3-3)

A large computed value of T? indicates a large deviation of the observation X; from the in-control

population. We can obtain a transformed value of the T? statistic,——n—(—n—_—-—}i——T2 which
p(n+1)(n—-1)

follows an F distribution with p and n-p degrees of freedom, by multiplying T? by the constant

—f(i——p)—. If the transformed value of the T? statistic is greater than the tabulated F value
p(rn+1)(n-1)
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for a given level of significance, 0, then we reject the null hypothesis that the process is in
control (normal) and thus signal that the process is out of control (anomalous).

The computation in formula (3-3) involves a covariance matrix and its inverse. Even
modern computers have difficulty in storing a large covariance matrix for hundreds of thousands
of variables in the memory. Moreover, there may be hundreds or thousands of events occurring in
an information system within a short period of time. If we compute the Hotelling’s T? statistic for
all events that occur at a high frequency, the computation time becomes unbearable, and the
processing delay of computing the covariance matrix and its inverse for each event becomes

unacceptable.

Therefore, a multivariate anomaly detection technique with a low computation cost is
needed for intrusion detection. Since the Hotelling’s T? statistic is a measure of the statistical
distance from an observation to the mean estimate of the multivariate normal distribution, we
develop a distance measure based on a chi-square test statistic as follows [3-17]:

X? = Z(X_‘E_)i (3-4)

i=1 Ei
where X; is the observed value of the ith variable, E; is the expected value of the ith variable, and

n is the number of variables. X° is small if an observation of the variables is close to the

expectation. Using (5(—1 ,3(”2 Y ens -j—(—n) as the estimate of the expectation, we obtain:

n (x- X
2 _ -
* _; Xi (3-5)

According to the central limit theorem, when the number of variables is large enough
(i.e., greater than 30), X? as the sum of squared differences between the observed and expected

values of those variables has approximately a normal distribution. Hence, the interval of [p-
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Z oG, W+Za20] contains (1-0) percent of the possible values of the X? population, where | and ©
are the mean and variance of the X population, @ is the significance level, and Zqp, is the

tabulated value of the standard normal distribution. The mean and standard deviation of the X

population can be estimated from the sample data of X? by the sample mean X and the sample

standard deviation Sx2. The in-control limits to detect anomalies can be set to 3 to obtain 3-sigma

control limits [3-18 — 3-19], [F-BSXZ, :7—(_5+3Sx2]. Since we are interested in detecting

significantly large X? values (large differences between observed and expected values) for
intrusion detection, we need to set only the upper control limit toE(—2+3Sx2. That is, if the

computed X? for an observation is greater thanS(—z_+BSX2, we signal an anomaly.

Unlike the Hotelling’s T statistic that is a distance measure taking into account the
covariance of multiple variables, the X? statistic in formula (3-5) does not consider the
relationships of multiple variables in order to simplify the computation. If intrusions into
information systems cause only small f/iolations of variable relationships but large departures

from the mean in some of multiple variables, the X statistic can be as effective as the Hotelling’s

T? statistic for intrusion detection.

IV. AN APPLCATION
This section describes an intrusion detection application, including the data source,

training data, testing data, and representation of the application problem.

A. Data Source
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An information system typically consists of host machines (e.g., machines running a
UNIX operation system and machines running the Windows NT operating system) and
communication links connecting those host machines, forming a network of host machines. Two
sources of data ha\.Ie been widely used to capture events in an information system for intrusion
detection: network traffic data and audit trail data (audit data). Network traffic data contain data
packets traveling over communication links between host machines to capture events over
communication links. Audit data capture events occurring on a host machine. In this study, we
use audit data from a UNIX-based host machine (specifically a Sun SPARC 10 workstation with
the-Solaris operating system), and focus on intrusions into a host machine that leave trails in
audit data.

The Solaris operating system from the Sun Microsystems Inc. has a security facility,
called the Basic Security Module (BSM). BSM supports the monitoring of activities in a host
machine by recording security-relevant events. There are over 250 different types of BSM
auditable events, depending on the version of the Solaris operating system. Since there are about
284 different types of BSM audit events on our host machine, we consider 284 event types in this
study. A BSM audit record for each event contains a variety of information, including the event
type, user ID, group ID, process ID, session ID, the system object accessed, and so on. In this
study, we extract and use only the event type that was one of the most critical characteristics of

an audit event.

B. Training and Testing Data
For intrusion detection, we want to build a long-term profile of normal events, and to

compare events in the recent past to the long-term norm profile for detecting a significant
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departure. Audit data of normal events are required for training the norm profile. In this study, we
use a sample of audit data for normal events that is developed by the MIT (Massachusetts
Institute of Technology) Lincoln Laboratory. The sample contains a stream of 3019 audit events.
We use the first part of the audit data, consisting of 1613 audit events, for training a norm profile.
The second part of the audit data, consisting of 1406 audit events, is used for testing.

We also need the audit data of intrusive events for testing. To create the audit data of
intrusive events, we use a number of intrusion scenarios that we have collected over years from
various information sources. Some examples of the intrusion scenarios are the password
guessing, use of symbolic links to gain root privileges, attempts to gain an unauthorized remote
access, etc. We run these intrusion scenarios in a random order through separate sessions on our
host machine to obtain the audit data of these intrusion sessions. The audit data of those intrusion
sessions, containing 1225 audit events, are used for testing. Hence, the testing data contain 1406

audit events for normal events and 1225 audit events for intrusive events.

C. Problem Representation

Acti\}ities on a host machine are captured through a continuous stream of audit events,
each of which is characterized by the event type. For intrusion detection, we want to build a long-
term profile of normal events, and to compare events in the recent past to the long-term norm
profile for detecting a significant departure. We define events in the recent past from time #-k to
time ¢ by a vector of (X1, X2, ..., X284) for 284 event types respectively, based on the
exponentially weighted moving average technique [3-18 — 3-19]. At time ¢, the audit events in the
recent past from time t-k to time t are summarized as follows.

Xi{r)= A*¥1+(1-2)* Xi(z 1) if the audit event at time ¢ falls into the ith event type (3-6)
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X{t)=A*0+(1-A)*Xi(t—1)  if the audit event at time ¢ is different from the ith event type

where Xi(t) is the observed value of the ith variable in the vector of observation at time ¢, Adsa
smoothing constant that determines k or the decay rate, and i = 1, ..., 284. The most recent
ob;éwation at time t receives a weight of A, the observation at time #-1 receives a weight of A(1-
A), and the observation at time t-k receives a weight of A(1-D).

In this study, we initialize Xi(0) to 0 fori = 1, ..., 284. We let A be 0.3 which is a typical
value for the smoothing constant. Figure 3-1 shows the decay effect of the smoothing constant
0.3.

Hence, for each audit event in the training and testing data, we obtain a vector of (Xj, ...,
X,s4). For example, given the following stream of audit events:

t=0, 1, 2, 3,

EventType3, EvéntType8, EventTypel, ......

At t = 0, all variables in the vector of (X, ..., Xog4) have a value of 0. At time t = 1, X3
has a value of 0.3 (equal to 0.3*1+0.7*0), and all other variables have a value of 0. At time t =2,
X3 has a value of 0.21 (equal to 0.3*%0+0.7%0.3), Xg has a value of 0.3 (equal to 0.3*1+0.7*0),
and all other variables have a value of 0. At t = 3, X3 has a value of 0.147 (equal to
0.3*0+0.7*0.21), X3 has a value of 0.21 (equal to 0.3*0+0.7*0.3), X; has a value of 0.3 (equal to

0.3*1+0.7*0), and all other variables have a value of 0.
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Figure 3-1. The effect of the smoothing constant 0.3.

The expected vector of (X, ..., Xas4) for the long-term profile of normal activities is

estimated from the training data by averaging all 1613 vectors that we obtain from 1613 audit
events in the training data, to obtain the expected vector, (Y1 ,_}—(—2, . 3?264). Considering that
events in a host machine actually arrive not all at once but sequentially, we use the following
recursive formula to incrementally update X after each event:

X = (k —l)ka- i+ Xk, i 3-7)

where k is the index of the current event.

It is possible that some types of audit events do not appear in the training data but occur
in the testing data. Hence, the average of the variable for such an event types is zero after the
training. To avoid having a zero value for the denominator of formula (5), the average of the
variable for such an event type is assigned to a small value after the training. In this study, we

used 0.00001.
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For each of the audit events (1406 audit events for normal activities and 1223 audit
events for attack activities) in the testing data and the corresponding observed vector of (X, ...,
Xog4), We compute X2 as follows:

- —\2
X*= %Q(;X')— (3-8)
e Xi
The computed X? is small if the observed vector is close to the expected vector, in other words,

the observation is close to the norm profile.

To determine the upper limit of X? in terms of F+3Sx2, we use the computed X2 values

for the first half (first 703 audit events) of 1406 normal events in the testing data to estimate the

average ()_(7) and the standard deviation (sz). The upper 1imit,3(—2+3Sx2, is then used to
determine whether we should signal each of the remaining 703 normal events and 1225 intrusive
events in the testing data as an anomaly. If the computed X? for an audit event is greater than the

upper limit, we signal the audit event as an anomaly.

V. RESULTS AND DISCUSSIONS

Using the computed X? values for the first 703 normal events in the testing data, we
obtain 1.72E+00, 1.71E+00, and 6.85E+00 for X2, Sx% and X’ +3Sx’ respectively in a
scientific expression. That is, the upper limit of the computed X? values for normal events is
6.85. If a computed X> value for an audit event is greater than 6.85, we signal this audit event as
an anomaly.

Figure 3-2 shows the computed X? values for the remaining 703 normal events (event no.
1-703) and 1225 intrusive events (event no. 704-1928) in the testing data. Table 3-1 summarizes

the statistics (minimum, maximum, average and standard deviation) of the computed X? values
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for the 703 normal events and the 1225 intrusive events. As shown in Figure 3-2 and the statistics
in Table 3-1, the computed X? values of the normal events are in average smaller than the
computed X* values of the intrusive events. Note that the smaller the computer X2 is, the closer

the audit event is to the norm profile.
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Figure 3-2. The computed X? values of audit events in the testing data.
When we use the upper limit of 6.85 to examine the computed X? values for the 703
normal events, we obtain no signals. This indicates that there are no false alarms, in other words,

we obtain the 0% false alarm rate. A false alarm is a signal for a normal event.

Table 3-1. The statistics of the computed X values for normal and attack data in the testing.

Testing Data | Minimum | Maximum | Average | Standard Deviation
Normal data 5.29E-01 | 4.06E+00 | 1.56E+00 9.23E-01
Attack data 6.81E-01 | 6.92E+04 | 3.79E+03 7.77E+03
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When we use the upper limit of 6.85 to examine the computed X? values for the 1225
intrusive events, we obtain 873 signals. The detection rate by audit event is 75% (equal to
873/1225) for the 1225 intrusive events. Since an intrusion session corresponds to one intrusion
scenario, we group the 1225 intrusive events into individual intrusion sessions. As a result, there
are signals for each individual intrusion session. The minimum detection rate by audit event for
all the intrusion sessions is 35%, and the maximum detection rate by audit event for all the
intrusion sessions is 86%. Hence, there are signals for each intrusion session. The detection rate
by intrusion session is 100%. The 71 percent of the intrusion sessions are detected at the first
audit event. That is, the first audit event of these intrusion sessions is signaled. The remaining 29
percent of the intrusion sessions are detected at the second audit event. Hence, every intrusion
session is detected at a very early stage.

The 75% detection rate by audit event for intrusions is most likely attributed to the fact
that intrusions involve some behavior (e.g., commands) that is also common in normal activities.
Hence, we should not expect that every audit event in an intrusion session be detected. However,
the overall behavior of intrusions seems different statistically from the overall behavior of normal
activities, as we observe in this study from the difference between 0% detection rate by audit
event for normal activities and 75% detection rate by audit event for intrusions. It is also possible
that some behavior in intrusions may occasionally occur in normal activities, causing false
alarms, although such a phenomenon does not show up in the testing data of this study.

Therefore, we expect that more accurate detection results can be achieved at an aggregate
behavior level where dominant behavior emerges and persists despite of noises, rather than at the
level of individual audit events. An aggregate behavior level can be the level of a session as in

this study. For example, in this study we calculate the detection rate by session. Since the
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maximum detection rate for normal sessions is 0% and the minimum detection rate for intrusion
sessions is 35%, we can select any detection rate by session in the range of (0%, 35%) as the
decision threshold (e.g., 20%). Using this decision threshold, we are able to clearly distinguish
intrusion sessions from normal sessions with the 100% detection rate and the 0% false alarm rate.

On the other hand, it is also desirable to detect an intrusion session early on while it is in
progress rather than waiting until the end of the session to get the detection rate by session. A
balance between accurate detection and early detection can be achieved by setting three levels of
intrusion detection: the normal level (green light), the alert level (yellow light), and the alarm
level (red light). When we receive the first signal in a session, we trigger an alert on this session
and change the color of the detection light from green to yellow, calling for the attention of the
system administrator. We calculate the accumulated detection rate from the first audit event to
the current audit event for the session. When the accumulated detection rate up to the current
audit event of the session exceeds a decision threshold, we trigger an alarm and change the color
of the detection light from yellow to red, claiming the session as an intrusion. Hence, an alert
does not become an alarm until the accumulated detection rate up to the current audit event of a
session exceeds a decision threshold.

The promising performance of the X? statistic as a simplified distance measure for
intrusion detection indicates that intrusions may not manifest as violations of variable
relationships but large departures from the mean in some variables. A report [3-20] on an
application of the Hotelling’s T2 statistic to intrusion detection reveals that the performance of
the Hotelling’s T2 statistic is similar to the performance of the X7 statistic in this study.

In summary, the results of this study show that the multivariate statistical technique based

on the chi-square test statistic achieved the 0% false alarm rate and the 100% detection rate by
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session. All intrusion sessions are detected at the first or second audit event. Although in this

study the multivariate statistical technique is tested using a small set of the testing data, the

results of this study demonstrate the very promising potential of this technique for intrusion

detection. This technique will be tested in the future with a large set of testing data for further

evaluating the performance and scalability.
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Chapter 4 Robustness of Chi-square and Canberra Distance Metrics

for Intrusion Detection

-~ We develop two multivariate quality control techniques based on chi-square and Canberra
distance metrics respectively to detect intrusions by building a long-term profile of normal
activities in the information system (norm profile) and using the norm profile to detect
anomalies. We investigate the robustness of these two distance metrics by comparing their
performance on a number of data sets involving different noise levels in data. This chapter
describes our work on comparing different statistical distance metrics in their effectiveness of

detecting intrusions when different levels of noises are presented in computer activity data.

L. INTRODUCTION

As we increasingly rely on information infrastructures to support critical operations in
defense, banking, telecommunication, transportation, electric power and many other systems,
intrusions into information systems have become a significant threat to our society with
potentially severe consequences [4-1]. An intrusion compromises the security (e.g., availability,
integrity, and confidentiality) of an information system through various means, including denial-
of-service, remote-to-local, user-to-root, information probing, and S0 on [4-2]. Denial-of-service
intrusions make a host or network service unavailable by overloading or disrupting the service.
Remote-to-local intrusions gain unauthorized access to a host machine without a legitimate user
account on the host machine. User-to-root intrusions happen when a regular user on a host

machine obtains privileges normally reserved for a root or super user. Information probing
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intrusions use programs to scan a network of computers for gathering information or searching
for known vulnerabilities.

Layers of defense can be set up against intrusions through prevention, detection, and so
on. -Firewalls, authentication and cryptography are some of on-line intrusion prevention
mechanisms to protect information systems from external intrusions [4-3]. Off-line intrusion
prevention efforts focus on methodologies of secure software design and engineering. The on-
line prevention mechanisms form a fence around information systems to raise the difficulty level
of breaking into information systems. However, the fence can only be raised to such a level that
services from information systems are not degraded. Although secure software methodologies
will continue to improve, bugs and vulnerabilities in information systems are inevitable due to
difficulty in managing the complexity of large-scale information systems during their
specification, design, implementation, and installation. Intruders explore bugs and vulnerabilities
in information systems to attack information systems. Hence, we expect that some intrusions will
be leaked through the fence of prevention and results in intrusions into information systems.

Intrusion detection techniques capture intrusions while they are acting on an information
system. Existing intrusion detection techniques fall into two major categories: signature
recognition and anomaly detection [4-4 — 4-21]. Signature recognition techniques [4-6 — 4-10],
also referred to as misuse detection in some literature [4-4, 4-5], match activities in an
information system with signatures of known intrusions, and signal intrusions when there is a
match. For a subject (user, file, privileged program, host, network, etc.) of interest, anomaly
detection techniques establish a profile of the subject’s normal behavior (norm profile), compare
the observed behavior of the subject with its norm profile, and signal intrusions when the

subject’s observed behavior deviates significantly from its norm profile [4-11 — 4-21]. Therefore,
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anomaly detection techniques rely on a norm profile, and consider a deviation of the subject’s
behavior from its norm profile as a symptom of an. intrusion. A justification of using anomaly
detection for intrusion detection is provided in [4-15]. A detailed review of the existing intrusion
detection techniques can be found in [4-4, 4-5, 4-11]

In our previous work [4-12], we present an anomaly detection technique based on
multivariate quality control using a chi-square distance metric to monitor computer audit data of
activities in an information system and detect intrusive activities. This technique is developed to
overcome: 1) the drawbacks of other statistical-based anomaly detection techniques for intrusion
detection, e.g., the sensitivity to the normality assumption, and the limitation to univariate
analysis, and 2) the scalability problem of conventional multivariate quality control techniques
such as Hotelling’s T? test when it is applied to large amounts of computer audit data for
intrusion detection. Our previous work demonstrates the feasibility and promising performance
of our technique based on chi-square distance metric for intruéion detection on one set of
éomputer audit data including both normal and intrusive activities. This paper reports our further
work on the robustness of this multivariate quality control technique based on the chi-square
distance metric as well as the Canberra distance metric to noises that typically present in
computer audit data.

In the following sections, we first define the Chi-square distance metric and the Canberra
distance metric. We then describe a number of data sets involving different noise levels to test
the robustness of these distance metrics to noises in data. Finally we present and discuss the

testing results.

I1. DISTANCE METRICS
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Hotelling’s T? test [4-22] is a common multivariate quality control technique to detect
anomalies — deviations from a norm profile - especially mean shifts and counter-relationships in
a process measured by multiple variables. Hence, Hotelling’s T? test can be applied as an
an(;rhaly detection technique for intrusion detection. Hotelling’s T? test uses the following
statistical distance to measure the deviation of a k-dimensional observation, X = [x1, X2, ..., X",

from a multivariate normal distribution of the process in control (a norm profile) which is

characterized by a sample mean vector, X=(x,X,,...,X,), and a sample variance-covariance

matrix, S = 1 i(x—;(Xx—;():

n-— j=1

T2 = (x - xS (x -X) 1)
where n is the size of the sample.

Computer audit data of activities in an information system often involve hundreds of
variables whose values change frequently. To monitor hundreds of variables from computer audit
data at a high frequency of sampling, the computation of the variance-covariance matrix and its
inverse in formula (4-1) requires a large amount of computer memory and computation time,
which becomes unacceptable for real-time monitoring and intrusion detection.

In our previous work [4-12], we introduce the following chi-square distance metric to

overcome the scalability problem of the statistical distance metric in Hotelling’s T? test:

—\2
7’ =i@ 4-2)

i=1 Xi
The chi-square distance measures the deviation from an observation from a norm profile
characterized by a sample mean vector only, with the distance scaled simply by the sample mean

vector rather than by the complex variance-covariance matrix.
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When k is large (e.g., greater than 30), the chi-square distance metric has a normal

distribution according to the central limit theorem [4-23]. Hence, the 3-sigma control limits on

the chi-square distance metric can be set to L{Z - 3sz T+ 3sz J for detecting anomalies.

Although the chi-square distance metric can detect only mean shifts, our testing results in
[4-12] demonstrate that the multivariate quality control technique based on the chi-square
distance metric produces a\comparable performance of intrusion detection to Hotelling’s T test
based on the statistical distance metric [4-14]. It is possible that for intrusion detection mean
shifts may be more important than counter-relationships that are not addressed in the chi-square
distance metric.

There are also many other distance metrics [4-24]. We present a few representative

distance metrics here. The Euclidean distance between an observation and a sample mean vector

X is:

133 = [3:fu-%) = fx W e

Another distance metric is the Minkowski metric

[ ]
dx,X) = [lexi — xi m} (4-4)
For m = 1, d(x, X) measures the "city-block" distance between two points iq k-dimensions.
For m = 2, d(x, ;() becomes the Euclidean distance. In general, varying m changes the weight
given to larger and smaller differences.
Two additional distance metrics are the Canberra metric and the Czekanowski coefficient.

Both of them are defined for nonnegative variables only. The Canberra metric and the

Czekanowski coefficient are given by equations (4-5) and (4-6) respectively.
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k lx,. — Xi

d(x,0 =) —= (4-5)

i=1 (x,. + )Ci)

) 2imm%b
©dxX=1-—- | (4-6)

k

> (x, +x)

i=1

Among these distance metrics, the Euclidean distance metric and the Minkowski distance
metric do not scale each dimension when calculating the distance. Our initial testing of the
Euclidean distance metric on the same data set as in [4-12] shows the poor performance of the
Euclidean distance metric for intrusion detection. The Canberra distance metric is most similar to
the chi-square distance metric in that both of them use the scaled distance and the sample mean
vector as one scaling factor in the denominator of formula (4-2) and formula (4-5). The Canberra
distance adds the observation value as another scaling factor (a part of the denominator). Hence,
we carry out this study to compare the performance of the chi-square distance with that of the
Canberra distance. We also want to investigate and test the robustness of these distance metrics
under different noises levels in data, as noises typically present in computer audit data collected

from an information system (discussed in the next section).
III. AN APPLICATION
This section describes the process of applying the Chi-square and Canberra techniques to

intrusion detection. It describes the data source, sets of data used, and problem representation.

A. Data Source
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A computer and network system within an organization typically includes a number of
host machines (e.g., machines running a UNIX operation system and machines running the
Windows NT operating system) and communication links connecting those host machines.
Cui‘fently two sources of data have been widely used to capture activities in a computer and
network system for attack detection: network traffic data and host audit trail data (audit data).
Network traffic data contain data packets traveling over communication links between host
machines to capture activities over communication networks. Audit data capture activities
occurring on a host machine.

In this study, we use audit data from a UNIX-based host machine (specifically a Sun
SPARC 10 workstation with the Solaris operating system), and focus on intrusions into a host
machine that leave trails in audit data. The Solaris operating system from the Sun Microsystems
Inc. has an auditing facility, called the Basic Security Module (BSM). BSM monitors the events
related to the security of a system and records the crossing of instructions executed by the
processor in the user space and instructions executed in the kernel. This is based on the
assumption that the actions in the user space cannot harm the security of the system and the
security-related actions that can impact the system only take place when users request services
from the kernel. BSM records the execution of system calls to the kernel by all processes
launched by the users and system programs. A full system call trace gives us an overwhelming
amount of information, whereas the audit trail provides a limited abstraction of the same
information in which the context switches, memory allocation, internal semaphores and
consecutive file reads do not appear. And there is always a straightforward mapping of audit

events to system calls.
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The BSM audit records contain the detailed information about the audit events in the
system. It includes the event type, detailed user and group identification - from the login identity
to the one under which the system call is executed, the parameters of the system call execution -
file names including full path, command line arguments etc., the return code from the execution,
and the error code. However, we use only the event type information contained in it, as many
studies [4-11 — 4-18, 4-20]"have shown the effectiveness of such information alone for intrusion
detection.

There are 284 different types of events in BSM audit data. In UNIX, there are thousands
of commands available. Since the audit events are closer to the core of the operating system, the
event type is more representative than the actual command sequences used. For example, we can
use any text editor, such as vi and ed to edit a file, but most of time the audit event stream
contains the following event- types: AUE_EXECVE, AUE_OPEN_R, AUE_ACCESS,
AUE_STAT.

In an intrusion session an intruder tries to hide the not-so-frequently-used commands
essential for the intrusion by adding large amount of frequently used commands. The effect of
this is that intrusion detection techniques recognize these as noises and fails to detect the
intruder's attempts. By using the event type information we are able to extract out the redundant
information about which particular commands are used, which particular files are accessed etc.,
and can focus on which particular kernel-level activities (event types) are being used by the
intruder. We also avoid the problem of having inconsistent data when we combine normal and
intrusion sessions from different sources such as different host machines.v As long as they belong

to the same Solaris BSM, we get the consistent event type information.
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Intrusions usually occur on a host machine while normal activities are<a1so occurring on
the host machine. If we consider intrusive activities'_ are signals that we want to detect, normal
activities are “white noises” in the background. Hence, computer audit data collected from the
host machine contain a mixture of normal and intrusive activities - signals plus noises.. The
number of normal activities is usually greater than the number of intrusive activities. Intrusion
detection is to capture signals from noisy data. The robustness of an intrusion detection technique

enables the technique to detect signals even when large amounts of noises are present.

B. Data Sets

In this study we have used four data sets. Among them, the size of the first three data sets
is small, containing computer audit data of both normal and intrusive events for a few minutes.
The size of the fourth data set is large, containing computer audit data of both normal and
intrusive events for four days. We implant different noise levels in the three small data sets to
help us in understanding the robustness of the multivariate quality control technique based on
two different distance metrics. The large data set resembles a collection of computer audit data
for a more realistic mixture of normal and intrusive activities in an information system.

A large portion of data in the four data sets comes from the MIT Lincoln Laboratory (LL)
which under the sponsorship of the Defense Advanced Research Projects Agency (DARPA) h;ls
created compute audit data of normal and intrusive activities for evaluating ihtrusion detectiqn
systems developed in some DARPA programs [4-2]. A testbed of a computer and network
system is set up at LL. Normal activities are simulated on this testbed to resemble activities in a
real-world computer and network system at a US Air Force base. Intrusive activities are also

simulated while normal activities are simulated. Intrusive activities are simulated based on a
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number of intrusion scenarios behind intrusion incidents that have happened in the past. The
DARPA-LL evaluation data consists of the three _data sets created in 1998, 1999 and 2000
respectively. These three data sets are accessible only to DARPA contractors and not to general
public. Hence, a small sample of the 1998 evaluation data set is also provided for general public
access. All these data sets include computer audit data of both normal and intrusive activities.

We use computer audit data of only normal events in the small sample of the DARPA-LL
1998 evaluation data as the computer audit data of normal events in the three small data sets.
There are 3019 normal events. Since the nature of the intrusive events included in the small
sample of the DARPA-LL 1998 evaluation data is not clearly specified, we simulate seven
intrusion scenarios in seven sessions respectively based on our own collection of intrusions
scenarios that have been used to attack computer and network systems in the past. The simulation
of these intrusion scenarios produces computer audit data of 1225 intrusive events used in the
three small data sets. The seven intrusion sessions produce 215, 225, 54, 36, 413, 247 and 35
intrusive events respectively. The host machine that we use to simulate the intrusion scenarios
has the same Solaris BSM. Hence, having normal data and intrusive data from two different host
machines is not a concern in this study as discuséed in the previous section.

Among the 3019 normal events, the first 2316 normal events are used as the training data
for the multivariate quality control technique to build the norm profile that is characterized by the
sample mean vector. The remaining 703 normal events are used as the testing data. All the 1225
intrusive events are used as the testing data. Hence, the training data contains the stream of 2316
normal events, and the testing data contains the stream of 703 normal events and the stream of

1225 intrusive events, totally 1928 events.
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To create the three small testing data sets with different noise levels for testing the
robustness of the two distance metrics, we arrange Fhe testing data in three different ways. The
first testing data set is created by putting the stream of the 703 normal events as the first part of
the testing data set and then the stream of 1225 intrusive events as the second part of the testing
data set. The second testing data set is created by putting the first 400 normal events of the 703
normal events followed by.the 530 intrusive events in the first four intrusions sessions, and then
the remaining 303 normal events of the 703 normal events followed by the 695 intrusive events
in the remaining three intrusion sessions. Hence, in the second testing data set, the normal and
intrusive events are inter-mixed, and the lengths of the normal and intrusion periods are nearly
same. The third testing data set is created by putting 100 normal events before each intrusion
session. Therefore, the noise level increases from the first testing data test (pure normal data and
then pure intrusive data), to the second testing data set, and finally to the third testing data set.

We build the large data set from the DARPA-LL 1998 evaluation data that consist of
seven weeks (35 days) of training data and two weeks of testing data. We choose four days of
data from this training data set as a representative of these 35 days of data to build the training
data and the testing data for ‘the large data set. Only four days of data are chosen to reduce the
training and testing time. Two weeks of testing data are not considered because the ground truth
(normal or intrusive) of events in these weeks of testing data is not provided. Without the ground
truth of these events, we cannot evaluate the detection performance of the multivariate quality
control technique based on the two distance metrics.

Two days of data are selected where there are not much intrusive activities, and another
two days of data are selected where there are lots of intrusive activities. These four days are

week-1, Monday data as day-1 data, week-4, Tuesday data as day-2 data, week-4, Friday data as
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day-3 data and week-6, Thursday data as day-4-data. Table 4-1 summarizes the statistics about
these 4 days of data. As we can see from the table, about 3% of day-2 and day-4 events are
intrusive events whereas less thap 0.80% of events in day-1 and day-3 data are normal events. In
terfiis of sessions, almost one-fourth of the sessions in day-2 and one-twelfth of the sessions in
day-3 are intrusive sessions. Day-1 contains mostly normal sessions, and day-4 also does not
have many intrusive sessions. There are totally 176 instances of 9 types of intrusions present in

these 4 days of data. Day-1 data and day-2 data are used as the training data, and day-3 and day-4

data are used as the testing data.

Table 4-1. Statistics about the large data set.

Day-1 Day-2 Day-3 Day-4
Event Information
Number of Events - 744085 1320478 2249505 925079
Number of Intrusive Events 3090 36575 16524 31476
Percentage of Intrusive Events 0.42% 2.77% 0.73% 3.40%
Session Information

Number of Sessions 298 503 339 447
Number of Intrusive Sessions 2 131 29 14
Percentage of Intrusive Sessions 0.67% 26.04% 8.55% 3.13%
Number of Events per Normal Session
Average 2503 3451 7203 2064
Minimum 1 69 74 96
Maximum 253827 462287 1019443 214705
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Number of Events per Intrusion Session

Average 1545 . 279 570 2248
Minimum 1101 142 166 1107
"Maximum 1989 1737 4986 2841

C. Problem Representation

The Basic Security Module (BSM) of the Solaris operating system monitors 284 different
types of audit events. An event can only be one of the 284 event types. We need to transform a
stream of audit events into a series of observation vectors in the form of x = [x], xp, ..., x¢]'. We
have 284 variables for 284 types of audit events respectively, producing x = [x1, x2, ..., X284]"
Each variable represents the smoothed occurrence frequency of the corresponding event type in
the recent past. Therefore, an ot_;servation vector is a 284-dimensional vector, X = [x, x2, ...,
x284]". The exponentially weighted moving average (EWMA) method [4-25] is used to generate
the smoothed occurrence frequency of each event type in the recent past as follows. For the
observation value of the n™ event in the event stream:

X, = (x,,n s Xg o nees x284,,,) 4-7N

Xin=AXO+(1-A)Xx; .13 %,0=0,1<i<284. (4-8)

In formula (4-9), x, is the smoothed observation vector for the n® event. The individual
dimensional values are computed using formula (8), where x;, is the smoothed observation value
for event type i for the n™ event; 0 is an indicator function which is 1 if event type i is present in
the n™ event, and O otherwise; Xi .1 is the smoothed observation value at the (n-1 )[h event; and 4 is

the smoothing constant (0 < A < 1). The smoothing constant is usually set to 0.3 [4-26] which is
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the value used in this study. Formulas (4-7) and (4-8) are used to obtain the observation vector
for each audit event in the training data.

The sample mean vector, X = (;1,52,..., ;284) , is obtained from the series of observation
vectors from the training data of normal events to characterize a long-term profile of observation
vectors for normal events (norm profile). We use the following incremental updating formula to
compute the sample mean vector from the training data:

;i,n = (n=Dxs + Xin where ;i,O =0,1<iL284 (4-9)

n

For the observation vector from each audit event in the training data, we use the
following formula to compute the chi-square distance metric of this observation vector from the

sample mean vector:

yi= 2284:@1 ) (4-10)
i=1

Xi
Using all the chi-square distance values from the training data, we compute the average and the

standard deviation of the chi-square distance values, 3 and SZ2 , and set the 3-sigma control

limits on the chi-square distance metric to [‘7—3S12 7 +3S sz for detecting intrusions in the

testing data.

For each audit event in the testing data, we use formulas (4-7) and (4-8) to obtain the
observation vector and use formula (10) to compute the chi-square distance value. From formula
(4-10), we can see that the chi-square distance value is a positive value. The larger the chi-square

distance value, the larger the deviation of this event from the norm profile, and the more likely

the event is a part of an intrusion. Hence, only the upper control limit Ve +3Sx’ is used to
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determine whether to signal the event as intrusive. If the chi-square distance value is greater than

or equal to the upper control limit, a signal is produced on this event to claim this audit event as

intrusive; otherwise, no signal is produced.

For the multivariate control technique based on the Canberra distance, formula (4-10) is

replaced with the following formula:

284 xin-;i >
C=) +—=. (4-11)

i=1 xi’n +xt

The 3-sigma upper control limit is set to C+38,.

IV. RESULTS AND DISCUSSIONS

This section presents the testing results for the multivariate quality control technique
based on the chi-square distance metric and the Canberra distance metric, and discusses the
robustness of these distance metrics. We use the Receiver Operating Characteristic (ROC)
analysis [4-27 — 4-28] to evaluate the performance of intrusion detection.

For each testing data set, the multivariate quality control technique based on each distance
metric produces a set of the distance values (for the chi-square distance metric or the Canberra
distance metric) for the audit events in the testing data set. Given a signal threshold, we can
compute the false alarm rate and the hit rate. A signal is produced on an event if the distance
value for this event is greater than the signal threshold; otherwise, no signal is produced on this
event. If a signal is produced on a truly intrusive event, this is a hit. If a signal is produced on a
truly normal event, this is a false alarm. Among all the intrusive events in the testing data set, we

count how many signals are produced on these events. The hit rate is the ratio of this count to the
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total. number of the intrusive events in the testing data set. Among all the normal events in the
testing data set, we count how many signals are produced on these events. The false alarm rate is
the ratio of this count to the total number of the normal events in the testing data set. Hence, for a
giv'eh signal threshold, we obtain a pair of the hit rate and the false alarm rate. By varying the
value of the signal threshold, we obtain many pairs of the hit rate and the false alarm rate. These
pairs are plotted as a ROC-curve. Measuring the hit rate alone indicates only how many intrusive
events can be detected. It does not indicate human workload required to analyze false alarms on
normal events. A low false alarm rate along with a high hit rate means a desirable performance of
intfusion detection in that the detection results can be trusted and human labor required to

confirm signals is minimized.

A. Small Data Sets

Figure 4-1 shows the ROC curve for the testing results' on the first small testing data set
with the lowest noise level (pure normal data followed by pure intrusive data) among the three
small testing data sets. Figure 4-2 shows the ROC curve for the testing results on the second
small testing data set with the intermediate noise level (including 400 normal events, 530
intrusive events, 303 normal events, and then 695 intrusive events). Figure 4-3 shows the ROC
curve for the testing results on the third small testing data set with the highest noise level (about
100 normal events before each intrusion session). The top-left corner of the charts in these
figures represents the 100% hit rate and the 0% false alarm rate. Hence, the closer the ROC curve
is to the top-left corner, the better the intrusion detection performance.

Figure 4-1 indicates that the Canberra distance metric yields a better performance than the

chi-square distance metric in the condition of the lowest noise level. Figure 2 and Figure 3
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indicate that the chi-square distance metric yields a better performance than the Canberra
distance metric in the conditions of the intermediate noise level and the highest noise level
respectively. By comparing the performance of the Canberra distance metric among the three
conditions of different noise levels, we find that the performance of the Canberra distance metric
drops as the noise level increases. The performance of the Canberra distance metric in the
condition of the highest noise level drops almost to the diagonal line in the chart that corresponds
to the expected performance of a random detector. Hence, the Canberra distance metric 1S
sensitive to noises. On the other hand, the performance of the chi-square distance metric is

consistent among different noise levels. Hence, the chi-square distance metric is robust to noises.

= Canberra Distance Metric X2 Distance Metric
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Figure 4-1. ROC curve for the first small data set at the lowest noise level.

At all the three noise levels, the chi-square distance metric produces about the 70% hit

rate at the 0% false alarm rate. Since common commands such as vi and Is in a UNIX operating
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system are frequently used by both normal users-and intruders, we should not expect that we can

signal every audit event in an intrusion session, thus having the 100% detection rate at the 0%

false alarm rate.

e Canberra Distance Metric === X2 Distance Metric
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Figure 4-2. ROC curve for the second small data set at the intermediate noise level.
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Figure 4-3. ROC curve for the third data set at the highest noise level.
B. Large Data Set

Since the large data set contains a large number of events, we perform the ROC analysis
not based on events but based on sessions. We group the events in the large testing data set by
session, count how many of the events in each session are signaled, and then compute the ratio of
the number of signals to the number of events in that session as the session signal ratio. If it is an
intrusion session, we expect a high session signal ratio. If it is a normal session, we expect a low
session signal ratio. Figure 4-4 shows the ROC curve of the testing results on the large data set
that resembles computer audit data collected from real-work information systems. A ROC curve
based on session signal ratio tells us how well we distinguish the intrusion sessions from the

normal sessions. The ROC curve in Figure 4-5 indicates that the chi-square distance metric
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performs better than the Canberra distance metric in distinguishing the intrusion sessions from

the normal sessions based on session signal ratio.

o V. CONCLUSION
The multivariate quality control technique based on the chi-square distance metric
demonstrates consistently better performance under the conditions of different noise levels than
the multivariate quality control technique based on the Canberra distance metric. The chi-square
distance metric is much more robust to noises in data than the Canberra distance metric. The
computation involved in the multivariate quality control technique based on the chi-square

distance metric is also simple, which makes it scalable to large amounts of computer audit data

for real-time intrusion detection.
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Figure 4-4. ROC curve for the large data set based on session signal ratio.
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Intrusions occur while normal activities are also taking place on a host machine. Even if
no normal users are using the host machine at the time when an intrusion occurs, there are system
programs (e.g., ftp daemon and the program monitoring the inputs from the keyboard) in the
information system running all the time. Hence, computer audit data from a host machine always
contain noises of normal activities. Because of the scalability and robustness of the multivariate
quality control technique based on the chi-square distance metric to noises in large amounts of
computer audit data, this technique is highly recommended to be included in commercial
intrusion detection systems for real-time intrusion detection. Most of existing commercial
intrusion detection systems use a signature recognition technique for intrusion detection. Since
signature recognition techniques can detect only known intrusions, an anomaly detection
technique such as the multivariate quality control technique based on the chi-square distance
metric is highly desirable to complement the signature recognition technique in commercial

intrusion detection systems for real-time or off-line intrusion detection.
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Chapter 5 Robustness of the Markov Chain Model for

Intrusion Detection

This chapter describes our work on the robustness of the Markov chain model for

intrusion detection when different levels of noises are present in computer activity data.

I. INTRODUCTION

A cyber attack is launched through a series of computer actions to compromise the
security (e.g., availability, integrity, and confidentiality) of a computer and network system. As
we increasingly rely on information infrastructures to support critical operations in defense,
banking, telecommunication, transportation, electric power and many other systems, cyber
attacks have become a significant threat to our society with potentially severe consequences [5-1
— 5-10]. Cyber attack detection aims at identifying cyber attacks while they are acting on a
computer and network system.

There exist two general approaches to detecting cyber attacks: pattern recognition and

anomaly detection, which complement each other in cyber attack detection [5-11 - 5-46].

Pattern recognition techniques identify and store signature patterns of known attacks.
They then match the subject’s observed behavior with those known patterns of attack signatures
and signal attacks when there is a match. Pattern recognition techniques have been used in many
commercial software and research prototypes [5-11, 5-16 — 5-26]. Attack signatures have been
characterized as strings, event sequences, activity graphs, and attack scenarios (consisting of
event sequences, their preconditions and target compromised states). Rules [5-16 — 5-22], state

transition diagrams [5-23 — 5-24], colored Petri net models [5-25] and decision trees [5-26] have
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been used to represent and match patterns of attack signatures. Although pattern recognition
techniques are efficient in detecting known attacks, they cannot detect novel or unusual attacks
whose signature patterns are unknown. Moreover, the repository of attack signature patterns must
be constantly updated to remain useful in a dynamically changing system environment (e.g.,

configurations, protocols, architectures, and attack scenarios).

For a subject (e.g., a user, file, privileged program, host machine, or network) of interest,
anomaly detection techniques, consisting of establishing a norm profile (a profile of the subjects
normal activities), observe the activities of the subject and signal attacks when the subject’s
observed activities differ significantly from its norm profile [5-27 — 5-46]. Anomaly detection
techniques consider the deviations of a subject’s observed activities from its norm profile, that is,
anomalies as symptoms of attacks. Denning [5-30] provides a justification of the anomaly
detection approach to cyber attack detection. Anomaly detection techniques can detect both novel
and known attacks if they demonstrate significant differences from the norm profile. Since
anomaly detection techniques treat all anomalies as attacks, false alarms are expected when
anomalies result from irregular behavior instead of cyber attacks. Pattern recognition techniques

and anomaly detection techniques can improve detection capabilities when used together.

This chapter presents some work on the anomaly detection approach to cyber attack
detection and concentrates on the robustness of a Markov chain technique. Several anomaly
detection techniques exist, and differ in the representation of a norm profile and the inference of

a deviation from a norm profile.

Specification-based anomaly detection techniques [5-27 — 5-29] describe security policies

and authorized activities of a well-defined subject such as a privileged program or a network
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server in terms of formal logic, rules, and/or graphs. However, it is often difficult to enumerate
and specify all possible normal activities or security policies of a subject, especially a large-scale
subject such as a host machine or a network where interactions of multiple objects and actions
are inevitable. Moreover, activities of many subjects in a computer and network system (e.g.,

users and files) involve random noises and variations that cannot be well addressed by formal

logic, rules, and/or graphs. -

Statistical-based anomaly detection techniques [5-30 — 5-36] construct a statistical profile
(i.ei, a univariate or multivariate statistical distribution) of a subject’s normal activities from
historic data. These statistical profiles do not consider the order in which the events occur to the
subject. Although these statistical-based anomaly detection techniques have demonstrated
promising performance for cyber attack detection with respect to detection rate and false alarm
rate, it is not clear whether further improvement in attack detection performance can be obtained
by taking into account the ordering of events (event transitions). Ye, Li, and Emran [5-26] show
that attack detection using a number of consecutive events during a given period produces better
performance than using a single event at a given time. Since many cyber attacks require a series
of related events to accomplish, it is possible to improve attack detection performance by

incorporating the ordering of events.

There exist several anomaly detection techniques that investigate the ordering of events
for cyber attack detection [5-38 — 5-47]. Both recurrent and perceptron neural networks have
been used to predict the next event (e.g., coﬁlmand or system call) from a series of the past
events [5-37 — 5-38].  Immunology-based anomaly detection techniques [5-38 — 5-41] capture a

large set of event sequences as the norm profile from historic data of a subject’s normal behavior,
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and use either negative selection or positive selection algorithms to detect incoming event
sequences that differ from event sequences in the norm profile. Anomaly detection techniques
based on Bayes’ parameter estimation for building a Markov model of a norm profile and
likelihood ratio tests for detecting anomalies [5-42 — 5-45], Bayesian networks [46], hidden
Markov models [5-41], or principal components analysis [5-47], are also investigated. However,
the training of all the above techniques taking into account the ordering of events is
computationally intensive [5-41, 5-44]. The inference of anomalies in many of the above
techniques [5-41, 5-38 — 5-41, 5-42 — 5-45, 5-46] is also computationally intensive. Immunology-
based anomaly detection techniques require large amounts of memory to store a large set of event

sequences.

A comparative study on a number of anomaly detection techniques indicates that a
technique based on a first-order Markov chain model of event transitions as a norm profile
produces comparable performance with a high-order Markov model and the other techniques [5-
42 — 5-45]. However, this technique based on the first-order Markov chain model of a norm
profile is still computationally intensive due to its use of the Bayes’ parameter estimation for
learning the norm profile and a likelihood ratio test for inferring anomalies. Considering large
amounts and high frequency of events in a computer and network system, this technique is not

applicable to cyber attack detection in real time.

This chapter examines the robustness of a Markov chain technique to noise as it is
introduced into the system. Section II describes the Markov chain model. Section III discusses
the representation of the attack detection problem using the Markov chain model and two

applications of the technique. Section IV defines the training and testing data and how they are
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obtained. The results of the applications illustrated in Section III are provided in Section V along

with a discussion of these results. Conclusions are presented in Section VL

II. MARKOV CHAIN MODEL
A discrete-time stochastic process can be described as an arbitrary family of random

variables X (¢,&,0) where ¢ is a series of discrete time points, t, <t <+--<t; <--<f, €T and T

is a parametric space. Here & represents all the random factors of the system, design parameter 0
belongs to an infinite set of all possible design parameters, and the set of all possible values
assumed by the process, S, is called the state space. A realization of the discrete-time stochastic

process may be described by plotting X (¢) against discrete time ¢ =¢,,¢,---t,---,#, € T when we

éésign e O avalue.

A Markov chain is a special typé of discrete-time stochastic process with the assumption
[5-48 — 5-51]

PXivi=i+1l X =i, Xe-1=ir-1,..., Xo=10) = P(Xr v 1= 111 Xe = 1r), (5-1)
forany te T and i, € S. That is, the probability distribution of the state at time 7+ depends on

the state at time #, and does not depend on the previous states leading to the state at time #.
Therefore, a Markov chain is a first-order Markov model which considers only one-step
transition probabilities. A high-order Markov model considers state transitions over more than
one time step. If we assume that a state transition from time ¢ to time #+1 is independent of time,
the Markov chain becomes a stationary Markov chain [5-24] and is denoted

PXiv1i=bhnl Xi=i)=P(Xe+1= ]|X1=l)= pij, for all # and all states, (5-2)
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where p;; is the probability that the system is in a state j at time 7+1 given the system is in state i
at time ¢. If the system has a finite number of states, 1, 2, ..., s, the Markov chain model can be

defined by a transition probability matrix [5-23]

pi piz - pis
p=|P P PR (5-3)
pst ps2 ot P
where
jf:piFl- (5-4)

Jj=1

The initial probability distribution [5-23] is represented by

o=lg ¢ - a]., (5-5)

where g; is the probability that the system is in state i at time 0. The probability that a sequence

of states Xj, ..., Xt occurs in the context of the Markov chain model is computed using
T
P(X1, -+, X1) = gu] | Px-1x (5-6)
=2

A logarithmic transformation of Equation (5-6) can be expressed as
T
log(P(X1,---, X1)) = log(q,, )Z log(Pxi -1x) . (5-7)
=2

Since we will be working with a very large sequence of events and we are taking the logarithm of
the probabilities the central limit theorem can be applied. According to the Central Limit
Theorem, we can conclude that the sequence of probabilities we obtained from the Markov chain

model conform to the normal distribution with which we are familiar and is easy for us to handle.
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The transition probability matrix and the initial probability distribution of a Markov chain
model can be obtained from the observations of the system state in the past. Given the
observations of the system state Xo, X1, Xa, ..., Xn.1, We estimate the transition probabilities and

the initial probabilities using [5-52, 5-53]

Ni
pi=or (5-8)
and
Ni
= 5-9
=N (5>-9)
where

e N is the number of observation pairs, X; and X, with X; in state i and X, in
state j,
e N; is the number of observation pairs, X; and X1, with X; in state i and X, in
A any one of the states 1, ..., s,

e N, is the number of X’s in state i, and

e Nis the total number of observations.
Bayes parameter estimation can also be used to estimate the transition probability matrix and the
initial probability distribution from historic data. However, Bayes’ parameter estimation is not
adopted in this study due to its high computational cost. Provided with sufficient historic data,
the estimation of the transition probability matrix and the initial probability distribution via

formulas (5-8) and (5-9) can be quite stable.

III. APPLICATIONS
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In this section, we define the attack detection problem, including the data source and
problem representation, by way of a particular example. We will further illustrate the robustness

properties of the Markov chain technique through a second application.

A. Application 1 ~

A computer and network system within an organization typically includes a number of
host machines (e.g., machines running a UNIX operation system and machines running the
Windows NT operating system) and communication links connecting those host machines.
Currently two sources of data have been widely used to capture activities in a computer and
network system for attack detection: network traffic data and audit trail data (audit data).
Network traffic data contain data packets traveling over communication links between host
machines, and thus capture activities over communication networks. Audit trail data capture
activities occurring on a host machine. In this study, we used audit data from a UNIX-based host
machine (specifically a Sun SPARC 10 workstation with the Solaris operating system), and
focused on attacks on a host machine that left trails in the audit data.

The Solaris operating system from Sun Microsystems Inc. has a security extension called
the Basic Security Module (BSM). The BSM extension supports the monitoring of activities on a
host by recording security-relevant events. A BSM auditable event falls into one of two
categories, kernel events or user-level events. Kernel events are generated by system calls to the
kernel of the Solaris operation system while user-level events are generated by application

software.
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There are more than 250 different types of BSM auditable events, depending on the
version of the Solaris operating system. There are also about 284 different types of BSM audit
events on the host machine used in this study. A BSM audit record for each event contains a
variety of information, including the event type, user ID, group ID, process ID, etc. In this study,
we extract and use only the event type, one of the most critical characteristics of an audit event.
Therefore, activities on a host machine are captured through a continuous stream of audit events,
each characterized by the event type.

By considering computer audit data with only event type, we detect attacks on a host
machine. When an attack is detected from a series of audit events, we can trace the original audit
records for the series of audit events and obtain more information sucﬁ as the user(s) and
process(es) from the original audit records to assist responses to an attack.

Both normal and attack _activities on a host machine contain sequences of computer
actions with random behavior. Sequences of computer actions induce sequences of audit events.
Random behaviors create the uncertainty in predicting the next audit event. Considering the 284
types of audit events as the 284 possible states of a host machine, event sequences on the host
machine can be represented as a discrete-time stochastic process. Discrete points in time for the
discrete-time stochastic process are defined not by a fixed time interval but by times when audit
events take place, because we are mainly interested in event transitions in this study. In an(';»ther
study, we develop a technique that examines the time interval or the event intensity for a given
period of time from computer audit data.

For attack detection, we want to build a long-term norm profile of event sequence, and to
compare the event sequence in the recent past to the long-term norm profile for detecting a large

difference. Using formulas (5-7) and (5-8), we train and build a Markov chain model of event
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sequence as the long-term norm profile by learning the transition probability matrix and the
initial probability distribution from a stream of audit events that is observed during the normal
usage of the host machine.

We define the event sequence in the recent past by opening up an observation window of
size N on the continuous stream of audit events to view the last N audit events from the current
time #, Ecn-1), - .., B, where E represents an event. At the next time z+1, the observation window
contains E¢ns2, .., Bw1. We investigated N = 100 and N = 10 to determine how the window size
affects the robustness of our technique and found that N = 10 is superior to a window size of N =
100. This phenomenon is due in part by the fact that as the window size increases, the
opportunity for more false alarms would also increase; thus, diminishing the performance of the
Markov chain technique.

For the audit events Eqgq, ..., E¢ in the window at time ¢, we examine the type of each
audit event and obtain the sequence of states X9, ..., X; appearing in the window, where X is
the state (the type of audit event) that the audit event E; takes. Using formula (5-6), we compute
the probability that the sequence of states X9, ..., X; occurs in the context of the normal usage;
that is, the probability that the Markov chain model of the norm profile supports the sequence of

states Xi.99, ..., Xt

1
P(Xi-99,-+,Xt) =@x - HPXE—IX:‘

i=t-98
The larger the probability obtained, the more likely the sequence of states results from normal
activities. A sequence of states from attack activities is expected to receive a low probability of

support from the Markov chain mode] of the norm profile.
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It is possible that a sequence of states from a window of the testing data presents an initial
state and/or some state transitions which are not encountered in the training and thus have the
* probabilities of zero in the initial probability distribution or the transition probability matrix of
the Markov chain model. While using formula (5-6) to infer the probability of support to the
sequence of states, the probabilities of zero would dominate the final probability result from
formula (5-6) and make it zero. This would make it impossible to distinguish attack activities
from normal activities with noises, since noises in normal activities may introduce a new initial
state and/or new state transitions. The amount of the new initial state and/or new state transitions
from noises in normal activities is expected to be much less than the amount of the new initial
state and/or new state transitions from attack activities.

If we observe the host machine for a very long period of time, we have the opportunity to
observe every possible initial state and state transition due to random noises in behavior.
However, not every possibility appeared in our training data due to the limited sample size of the
data. For example, if the true probability of an initial state is 0.00001 and the sample size of the
training data is 1613, the expected number of times that this initial state appears in the training
data [5-24] becomes 0.01613 (equal to 0.00001*1613). That is, we should not expect to observe
this initial state in the training data, although the true probability of this initial state is not zero.

Therefore, while using formula (5-6) to infer the probability of support to a sequence of
states, we replace the probability of zero for a new initial state or a new state transition with a
small probability value. By assigning a small probability rather than zero to the new initial state
or the new state transition, the small noise effects in normal activities on the final probability
result of formula (5-6) becomes distinguishable from the larger effect of attack activities on the

final probability result of formula (5-6).
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In this study, the sample size of the training data (to be presented in the next section) is
1613. Since 1/1613 yields 0.0006, any initial state or state transition with a true probability less
than 0.0006 is not expected to appear in the training data. Therefore, any small probability values
less than 0.0006 can be chosen. A smaller probability value is better in magnifying the difference
in the amount of the new initial state and new state transitions in attack activities than those
resulting from noises in normal activities. In this study, we assign the probability value of
0.00001 to an initial state or a state transition, which does not appear in the training data, while
using formula (5-6) to infer the probability of support to a sequence of states. This replacement
of zero with a small probability value takes place during the inference and after the estimation of
the Markov chain model from the training data is complete.

The learning and inference of the Markov chain model for attack detection are
implemented using C++. In our C++ program, we use the data type “double” for the variable that
keeps the probability of support to the sequence of states from a window. A variable of the data
type “double” takes 64 bit of memory with the value range [1.0E-323, 1.0E+323] in scientific
expression. For probability values smaller than 1.0E-323, the variable is assigned the value of

zero. The results and discussion of this application are provided in Section V.

B. Application 2

A second application is presented in this section to further demonstrate the Markov chain
technique using a larger dataset. In this situation we have two large datasets, a Mill dataset and a
Pascal dataset, which were obtained from the MIT Lincoln laboratory. Mill and Pascal are the
names of the host machines of the network constructed by the MIT Lincoln laboratory in order to

simulate the environment of the network in the real world and thus provide a test bed of
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comprehensive evaluations for various intrusion detection systems. Our Mill and Pascal audit
datasets are collected from these host machines. The operating systems are Solaris 2.5.1 and
Solaris 2.7, respectively. The Mill dataset includes 15 normal sessions consisting of 68872 audit
events and seven attack sessions. The Pascal dataset includes 63 normal sessions consisting of
81756 audit events and four attack sessions.

For our Markov chain technique, we ﬁse the data collected in the last hour from the
machine named Mill, which only contained the normal audit data, as the training dataset. The
dataset collected in all three hours from the same machine was used as the testing dataset. The
data for the machine named Pascal is collected identically to that of the Mill machine. The results

and discussion of this application are provided in Section V.

IV. TRAINING AND TESTING DATA

In this section, we present the training and testing data used in the example outlined in
Section IILA involving four datasets with various levels of noise intrusion. Audit data of normal
activities are required for estimating a Markov chain model of the norm profile. We use a sample
of audit data for normal activities from the MIT (Massachusetts Institute of Technology) Lincoln
Lab, containing a stream of 3019 audit events [3-12] for our study. Computer audit data for
normal activities from the MIT Lincoln Lab are generated by simulating activities in a real
computer and network system. This sample of audit data for normal activities, consisting of 2316
audit events, is divided into two parts; one part consisting of 1613 audit events and the other part
consisting of the remaining 703 audit events. The part consisting of 1613 audit events is used for
training a Markov chain model of the norm profile. The second part of the audit data, consisting

of 703 audit events, is used for testing.
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For testing, audit data of attack activities are generated in our lab by simulating 15 attack
scenarios, in a random order, which have been collected over several years from various
information sources. Some examples of the attack scenarios are password-guessing, attempts to
gain an unauthorized access remotely, etc. The attack scenarios are manually run on the host
machine while the auditing facility is turned on, resulting in a stream of 1225 audit events. As a
result, the training data consist of the 1613 audit events for normal activities from the MIT
Lincoln Lab, and the testing data consisting of the 703 audit events for normal activities from the
MIT Lincoln lab and the 1225 audit events from attack activities from the simulation in our lab.
Although there are two sources for obtaining data — MIT Lincoln Lab and our lab — the same
operating system is used at both labs. The characteristic under study, event fype, is also the same
for both locations.

Next, a Markov chain model of the norm profile is obtained using the training data that
contain the 1613 audit events for norrna1 activities. As will be discussed in the next section, there
are 284 possible types of audit events, of which only 11 types of audit events will appear in the
training data. With 11 types of audit events, there are at most 132 parameters (equal to 121
parameters for the transition probability matrix + 11 parameters for the initial probability
distribution) in the Markov chain model to estimate from the 1613 data points. Moreover, not all
the 121 possible state transitions appear in the training data. The 1613 data points are sufficient
to estimate the parameters in the Markov chain model in this situation.

For testing, the 1225 audit events (¢t = 0, 1, ..., 1224) from attack activities and the 703
audit events (¢ =0, 1, ..., 702) from normal activities are viewed through a moving window of
100 events, creating 1126 windows (¢ = 99, 100, ..., 1224 or window no. 1-1126) for attack

activities and 604 windows (t = 99, 100, ..., 702 or window no. 1-604) for normal activities.
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Each of the first 99 audit events for either attack activities or normal activities does not create a
window, because the event and preceding events together do not provide 100 audit events for a
complete window. The robustness of the Markov chain technique will be examined for window
sizes of N =10 and N = 100 and the results compared and contrasted.

Note that intrusions usually occur in an information system while normal activities are
also occurring in the information system. In real time, intrusive audit data are mixed with white
noises of normal audit data. Thus, in order to investigate the robustness of the Markov chain
technique or, how the performance of this technique depends on the quality of audit data, we
creéte four sets of testing dataset using the 1225 audit events from attack activities and the 703
audit events from normal activities described above. Each subsequent dataset has an increase in
mixture of abnormal audit events with the normal events (i.e., the noise level increases from one

dataset to the next).

For testing dataset 1 (Pure), we put the 1225 abnormal audit events behind the 703
normal audit events. Obviously, we do not do any mixing for this set of data. For the testing
dataset 2, the abnormal and normal audit events are mixed by dividing the 1225 abnormal audit

events evenly into two parts, D, and D,,, and also divide the 703 normal audit events evenly
into two parts, D, and D,,. We then arrange all parts as follows: D, D,,, D,,, D,,. We will

refer to dataset 2 as the small noise level (SNL) dataset. For testing dataset 3, the 1225 abnormal

audit events are divided into seven parts — not necessarily of the same size, D, , D,,, D3, Dy,
D,;, D, and D,,, while the 703 normal audit events are also divided into seven parts, D,;,
D,,,D,,D,,, D,s, D,s and D,,. We then arrange all these parts as follows: D,;, D,,, D,,

D,,D,, D, D,,D,, Dy, Dy, Dy, Dy, D,;, D,,. Dataset 3 will be referred to as the

n3? a3?
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large noise level (LNL) dataset. For the testing dataset 4 (Random), we mixed the 1225
abnormal audit events and 526 normal audit events randomly. From a window at time 7, a
sequence of states Xy.gg,..., X; is obtained and evaluated against the Markov chain model of the
norm profile to yield the probability that the sequence of states is supported by this Markov chain
model. A high probability indicates that the sequence of states more likely result from normal
activities. The lower the probability we obtain, the less likely the sequence of states is a result of

normal activities.

V. RESULTS AND DISCUSSION

A. Receiver Operating Characteristic (ROC) Curves

For a given test, different signal thresholds lead to different pairs of false alarm rate and
hit rate that describe the performance of the test according to signal detection theory [5-55]. A
false alarm would occur when normal aqtivities were signaled as attack activities, and a hit would
occur when a signal is observed and the event was an attack activity. The false-alarm rate is
given by (number of signals)/(the number of normal activities). Obviously, we prefer that the
false-alarm rate be small. For example, assume there are 703 normal audit events investigated
and 24 of these events signaled as attack activities. We would say that the false-alarm rate is

24
—_ or 0.0341. Obviously, it is desirable to have the false-alarm rate be as small as possible.

The hit rate, on the other hand, is given by (number of signals)/(number of attack activities). In

this situation, we would prefer that the hit rate be as large as possible.
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A Receiver Operating Characteristic (ROC) curve plots pairs of false-alarm rate and hit
rate as points when various signal thresholds are used. For reasons discussed previously, we
apply the logarithmic transformation given in (5-7) before the ROC curve is actually constructed.

For Application 2, event-based and session-based ROC curves are investigated. Session-
based signal detection involves. grouping a set of events into one “session” and estimating the
average number of signals along with the standard deviation of the number of signals. For
session-based detection, the signal threshold is initially estimated using X +3s, whereX is the
average response and s represents the standard deviation of the response over the entire session.
Based on normal theory, if the data are normally distributed we should expect approximately
99.7% of the data to fall within three standard deviations of the sample average. If data fall
beyond three standard deviations, then we may conclude that these data are unusual (i.e., the
result of attack activities). As will be shown, it is not necessary for three standard deviations to
be used in calculating the signal threshold. We will provide some results when two standard
deviations are employed for estimating the signal threshold.

To illustrate the usefulness of ROC curves in general, consider Figure 5-1. The closer the
ROC curve is to the upper-left corner (representing 100% hit rate and 0% false alarm rate), the
better the performance of the test. If the probability of support to the testing data from a moving
window is greater than the decision threshold, the activities in the moving window are classified
as normal activities; otherwise the activities in the moving window are classified as attack

activities.

B. Application 1
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ROC curves for window sizes of N = 100 and N = 10 are presented in Figure 5-1 and
Figure 5-2, respectively. The results for each of the four small datasets described in the previous

section are plotted for these window sizes.
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Figure 1. ROC Results of the Markov Chain Technique for Four Small Datasets and N = 100.
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Figure 2. ROC Results of the Markov Chain Technique for Four Small Datasets and N = 10.
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Examining the ROC curves in Figure 5-1 and Figure 5-2, it is‘obvious that the detection
performance of the Markov chain technique depends strongly on the quality of audit data. That
is, as the noise level increases the performance of the Markov chain decreases. We can also
conclude that the Markov chain technique with a smaller window size (N = 10) outperforms the
Markov chain technique with a window size of N = 100 as the amount of noise in the system

increases.

C. Application 2

The ROC curves for the Mill dataset are given in Figure 5-3 through Figure 5-5. Figure
5-3 represents the Event-Based ROC curves for N = 100 and N = 10. Figures 5-4 and 5-5 display
the Session-Based ROC curves using two standard deviations and three standard deviations,
respectively. Based on these results, the detection performances of the Markov chain techniques
with N = 100 and N = 10 are comparable for the event-based situation and the session-based
situation with two standard deviations. Notice however, that as the standard deviation increases
from two to three (see Figure 5-5) the Markov chain technique with N = 10 is superior to the
technique when N = 100. The superior performance of the technique with a smaller window size
is due in part to fewer opportunities for false alarms. A second observation is that the
performance of Markov chain technique with N = 10 decreases as the number of standard

deviations increase.
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ROC curves are also provided for the Pascal dataset under the same conditions as the Mill
dataset. The curves are provided—in Figures 5-6 through 5-8. Based on these curves, the Markov
chain technique appears to be quite robust to the window size in all three cases and to the number
of standard deviations for the session-based cases shown in Figures 5-7 and 5-8. However, note

that the false alarm rate is higher when N = 100 than when N = 10 for the session-based

situations.
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VI. CONCLUSIONS
We conclude that in order to apply the Markov chain technique and other stochastic

process techniques to modeling the sequential ordering of events, the quality of activity data

needs to be improved. The improvement could be through, for example, noise canceling, if we
consider data of normal activities are noises and data of intrusive activities are signals.
Our study has shown that the performance of the Markov chain techniques is not always
robust to the window size. As the window size increases, the number of false alarms will also
| generally increase. Further investigation would reveal if the inclusion of noise cancellation
techniques would improve the robustness of the Markov chain technique in relation to the
window size.
! We have also provided some initial results on the choice of the number of standérd

deviations when using session-based techniques. Our results indicate that as the number of

standard deviations is increased, the poorer the performance of the Markov chain technique.
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This should not be surprising since increasing the threshold would increase the probability of
obtaining a false alarm.

Overall, our study provides some support for the idea that the Markov chain technique
may not be as robust as the other intrusion detection methods such as the chi-square technique
discussed in [5-35]. But, if the Markov chain approach is employed in conjunction with noise
cancellation techniques, it is suspected that anomaly detection can be greatly improved. Future
research will focus on improving the robustness of our Markov chain techniques to noise in the

testing audit data.
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Chapter 6 First-Order versus High-Order Stochastic Models for

Intrusion Detection

This chapter presents two different methods of applying stochastic models to computer
intrusion detection. One method is based on a first-order stochastic model, specifically a Markov
chain model. The other method is based on a partial high-order stochastic model. Stochastic
models are used to build a profile of normal activities on a computer from training data of normal
activities on the computer. The norm profile is then used to detect anomalous activities from
testing data of both normal and intrusive activities on the computer for intrusion detection. Audit
data of computer activities contain a sequence of computer events that is represented as a series
of event transitions in stochastic models. The comparison of detection performance between the
Markov chain model application and the partial high-order stochastic model application reveals
better detection performance of- the Markov chain model application to computer intrusion

detection.

I. INTRODUCTION
A computer and network system consist of host machines (e.g., computers and routers)
and communication links connecting those host machines. Intrusions into a computer and
network system compromise the security of the system by making the system unavailable to
provide services to users, corrupting data on systems, and/or stealing sensitive information on the
system. Computer intrusion detection is to monitor activities on a computer or network system
and detect intrusive activities that are taking place on the system [6-1 — 6-3]. Existing intrusion

detection techniques fall in two general categories: signature recognition and anomaly detection
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[6-4 — 6-7]. Signature recognition techniques acquire signature patterns of known intrusions and
search for those intrusion signatures in data of system activities to detect intrusions. Anomaly
detection techniques build a profile of normal system activities and consider any deviations of

system activities from the norm profile as intrusions. This paper focuses on anomaly detection

techniques for intrusion detection.

Two kinds of data have mainly been used for intrusion detection: computer audit data and
network traffic data. Computer audit data record a sequence of events occurring on a host
machine, while network traffic data capture data packets traveling on the network links

connecting host machines. This study focuses on computer audit data.

Various methods have been used in existing intrusion detection techniques to represent a
sequence of events in computer audit data for building the norm profile [6-5]. Different features
of a given event sequence, such as the event frequency distribution and the sequential order of
events, are captured in different methods of building and representing the norm profile. The
event transition method captures the sequential order of events that is not available in the event
frequency distribution method. The study by Ye and her colleagues [6-5] revéaled that the

| sequential order of events provided additional advantages to the event frequency distribution for
intrusion detection performance. That is, the sequential order of events is important to intrusion
detection, because intrusive events follow a certain logical sequence in order to produce the

intrusion effect.

Both first-order and high-order models of stochastic process have been applied for
capturing the sequential order of events in terms of event transitions for intrusion detection [6-5,

6-8 — 6-16]. Theoretically high-order stochastic models capture more information of a given
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event sequence than first-order stochastic models. However, high-order stochastic models come
at high costs of computation. Hence, there are studies that use artificial neural networks [6-13 =
6-14] and other techniques [6-15 — 6-16] for prediction of the next event, En, from (7T-1) previous
events, E, 1, ..., Ent. The model of the transition from k previous events to the next event in
those techniques is actually a partial high-order stochastic model, because the model does not
include information about the transition of (T-2) previous events to the next events, the transition
of (T-3) previous events to the next events, and so on. Although building a partial high-order
stochastic model for intrusion detection reduces the computational cost, it is not clear whether
the partial high-order stochastic model can still produce the same level of detection performance

as the complete high-order stochastic model.

This study investigates the performance of a partial high-order stochastic model in
comparison with the performancé of a first-order stochastic model—a Markov chain model—for
intrusion détection. The performance of a partial high-order stochastic model is compared not
with that of a complete high-order stochastic model but with that of a first-order stochastic model

due to the cost of building a complete high-order stochastic model.

In the following sections of this chapter, we first describe the first-order Markov model
and the partial high-order Markov model used for intrusion detection. We then describe the
application of these Markov models to intrusion detection, including data sources and problem

representation. Finally, we present the testing results of these applications, and conclude the

paper.
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II. FIRST-ORDER AND HIGH-ORDER STOCHASTIC MODELS

If we observe a system at some discrete points in time, n = 0,1,2,3,4,..., the state of the
system is defined by a random variable, X,, and the value of X, is not known with certainty
before time n, then {Xy,, n = 0} describes a stochastic process of the syst'em [5-17]. This type of
stochastic process, in which the system is observed at discrete points in time, is known as
discrete-time stochastic process. The times at which the system is observed may not be equally
spaced along the time axis. The other form of stochastic process is continuous-time stochastic
process, in which a system is observed continuously over time. We are interested in discrete-time

stochastic processes in this study. The first-order and high-order models of discrete-time

stochastic process are described below.

A. A Markov Chain Model—A -First-Order Stochastic Model

A Markov chain is a first-order discrete-time stochastic process with the Markov property

as follows:

P(Xn+1=in+1]Xn:in,Xn-1:in—l,...,X0=i0):P(Xn+1=in+1|Xn:in) (6-1)

for all n, and iy, iy, ..., ips; are system states [6-18]. That is, the probability distribution of the
state at time n+1 depends on the state at time n, and does not depend on the previous states

leading to the state at time n. A Markov chain model is a first-order stochastic model.

Adding an additional property that a state transition from time n to time n+/ is independent

of time:
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P(Xnsi1=in+11 Xe=in)=P(Xe+1=jl Xe=1)= pjj (6-2)
for all n and all states, the Markov chain becomes the stationary Markov chain [6-24] which we
refer to in later text simply as the Markov chain, where p;; is the probability that the system is in a
state j at one time given that the system is in state i at the previous time [6-18]. If the system has
a finite number of states, 1, 2, ..., s, the Markov chain model can be defined by a transition

probability matrix [6-18]: ~

pu pi2 -+ Pis
p=|P? P2 PR (6-3)
Ds1 Ds2 - Dss

and an initial probability distribution [6-18]:
o=lg ¢ - al, (6-4)

where g; is the probability that thé system is in state i at time 0, and

S pi=l. | (6-5)

Jj=1
The joint probability for a given sequence of T states X,z ..., Xn at time n—(T-] ), .., RIS

computed as follows:

1
P(Xn-1+1,,Xn)=Guu-ros [ [ Ph-ta-sss (6-6)

t=T—1
The transition probability matrix and the initial probability distribution of a Markov chain
model can be learned from observations of system state in the past. Provided with observations
of system state, Xy, X;, X, ..., Xy at time n =0, ..., N-1, we learn the transition probability

matrix and the initial probability distribution as follows [6-19 - 6-20]:

_Ny (6-7)

pi= Ni. »
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N: | (6-8)

where

Nj; is the number of observation pairs X, and X,,.; with X, in state i and X, 1n state J,

N; is the number of observation pairs X, and X,,,; with X,, in state i and X, in any one of

the states 1, ..., s, |

Ni is the number of X,,’s in state i, and

N is the total number of observations.
Bayes parameter estimation can also be used to learn the transition probability matrix and the
initial probability distribution from historic data. However, Bayes parameter estimation has a
high computational cost and is not appropriate when there are large amounts of data. Provided
with sufficient historic data, the estirhation of the transition probability matrix and the initial

probability distribution via formulas (7) and (8) can be quite stable.

B. A Partial High-Order Stochastic Model

Given a discrete-time stochastic process and a sequence of states from this process, X,

X, ..., X,, the joint probability for the sequence of states is calculated as follows:
P(Xn,Xn-1,.. X0)=P(Xa\ Xn-1,.., X0 )P(Xn-11 Xn-2,...,X0)..P(X21 X1)P(X0). (6-9)

If we assume the state at time n depends only on previous (7-1) states, the joint probability for a

given sequence of states, X;.74y, ..., X, is calculated as follows:

P(Xi-1+1,0 Xn-1Xn)=P( X\ Xn-1ye, Xn -1+ 1)P(Xn-11 X - 2,00, Xn =T+ 1 ). P( Xn -7+ 1 )(6-10)
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Hence, a complete high-order stochastic model should include the following transition matrices:
P(an Xn—l,...,Xn—T+1),

P(Xn—Ian—Z,...,Xn—T+1),

P(Xn-1+2|1 Xn-1+7), (6-11)
and the initial probability distribution:

o=[g g2 - g, (6-12)
where g; is the probability that the system is in state i at time 0, and i € §.

In those studies [6-13 — 6-16] based on the prediction of the next event, X, from (7-1)
previous events, X, 1.1, ..., Xn.s for intrusion detection, training data of normal activities on a
computer or network system are used to build a high-order stochastic model of normal activities

(norm profile) with only the information of
P(Xul Xn-1,..,Xn-T+1) (6-13)

which is represented in the form of an artificial neural network (ANN) or simply a look-up table.
Given a sequence of events in the testing data, X, 74, ..., X, at time n-T+1, ..., n, the same term
in formula (6-13), P(X, | X,.; Xy2 ... Xp.1+1), is determined from the norm profile through making
a prediction using the ANN model or the look-up table. If this probability, P(Xy | Xn.s Enz ... Xn-
7+1), is smaller than a pre-set threshold, the sequence of events is considered as intrusive. That is,
in those studies only a small part of formulas (6-10) and (6-11) is used for intrusion detection,

whereas a complete high-order stochastic model consists of formulas (6-10), (6-11) and (6-12) in
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their complete form. Hence, only a partial high-order stochastic model is used for the application

to intrusion detection.

III. APPLICATION OF STOCHASTIC MODELS TO INTRUSION DETECTION

In this section, we describe the data of system activities that are used for intrusion
detection. We also define how the Markov chain model and the partial high-order stochastic

model are applied to the problem of intrusion detection.

A. Training and Testing Data

A computer network consists of mainly host machines that are connected through
communication links. Host machines may run operating systems such as UNIX or Windows
NT/2000. These operating systems have facilities to monitor and log activities occurring on a
host machine, producing compute audit data or log data. Network traffic data are usually
collected over communication links while these data are traveling through communication links.
In this study, we detect intrusions based on data of activities on host machines instead of network

traffic data.

Activities on host machines generate sequences of computer actions that in turn induce
sequences of auditable events in the kernel of operating systems recorded in form of computer

audit data. Audit data contain records of auditable events, each audit record for each event.

Audit data from two UNIX-based host machines, named Mill and Pascal, are available in
the 2000 DARPA (Defense Advanced Research Projects Agency) Evaluation Data that are

generated by simulating activities in a real world computer and network system. Normal and

154




intrusive activities are similar on Mill and Pascal. From these two host machines, we obtain two
audit data sets (Mill and Pascal) for this study. The operating systems for the Mill and Pascal
host machines are Solaris 2.5.1 and Solaris 2.7 respectively. On these operating systems, there is
a Basic Security Module (BSM) that record audit events and produce audit data. Information in
an audit record for an audit event includes event type, user ID, process ID, session ID, etc. There
are 284 different types of auditable events in BSM. In this study, we extract only the information
of event type from each audit record because event type has been very effective in detecting

intrusive activities [6-5, 6-6].

Both Mill and Pascal data sets are used to test the intrusion detection performance of
stochastic models, producing two sets of testing results respectively. Table 6-1 summarizes the
main features of Mill/Pascal data sets. Mill/Pascal data cover about 3 hours of activities on

Mill/Pascal host machines.

Table 6-1. Features_of Mill and Pascal data sets.

Features Mill Data Set Pascal Data Set
Normal Events 68,871 81,755
Intrusive Events 36,036 32,327
All Events 104,907 114,082
Number of Unique Event Types | 69 53
Number of Normal Sessions 14 63
Number of Intrusive Sessions 7 4

We use two sets of training and testing data: Mill and Pascal. Training data are required
to build a stochastic model of the norm profile. From the Mill data set, aildit_data for normal
events in the last hour of the 3-hour activities are used as the training data, and the whole set of

the 3-hour Mill data containing both normal and intrusive activities is used as the testing data.
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There are 42,983 audit events in the Mill set of training data with 67 unique event types. From
the Pascal data set, audit data for normal events in the last hour of the 3-hour activities are used
as the training data, and the whole set of the 3-hour Pascal data containing both normal and

intfusive activities is used as the testing data. There are 20,616 audit events in the Pascal set of

training data with 53 unique event types.

B. Data Representation

A sequence of audit events in the training or testing data presents a discrete-time
stochastic process that we consider for intrusion detection. Each audit event is an observation,
and the time when an audit event occurs is the time of the observation. We consider the event
type of an audit event as the state. Hence, there are 284 possible states, denoted by s1, ..., 5284,
as there are 284 different types (;f audit events. A set of training or testing with N audit events

can thus be represented as a sequence of states, Xo, X1, ..., Xn-1, XN-

C. Application of the Markov Chain Model to Intrusion Detection

Using a set of training data, a Markov chain model of the norm profile is built based on
formulas (6-7) and (6-8). Each audit event in a set of testing data is evaluated to determine
whether it is intrusive or not. To determine whether the event at time » is intrusive or Xn 18
intrusive, we use the state information from this audit event and previous audit events within a
window of the recent past because the state information from a single event is not sufficient to
detect intrusions [6-5]. A window of size T contains an audit event and previous T-1 events.

Hence, a window of size T presents a sequence of T states, X141, .--» Xn-1 Xa. Given a sequence
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of states in a recent-past window of the current event, we use formula (6-6) to obtain the joint
probability for this sequence of states. This joint probability provides the basis to evaluate
whether the current event is intrusive or not. The larger the value of this joint probability, the
more likely the current evént is normal as we more likely observe this sequence of states in the

condition of normal activities that is captured in the Markov chain model of the norm profile.

There may be certain event types or transitions between certain event types that appear in
a set of testing data but not in a set of training data, resulting in that values of certain terms in the
right—hand side of formula (6-6) are not available in the transition probability matrix or the initial
probability distribution of the Markov chain model. We assign a small value, specifically a
default value of 0.000001, to those terms. By assigning a small value instead of the zero value to
those terms, we avoid getting the zero value for the calculation of a joint probability. The non-
zero value of a joint probability helps distinguish small effects of anomalies caused by noises in

the data of normal activities from large effects of anomalies caused by intrusive activities.

In this study, we test the Markov chain model application using two window sizes of
T=10 and T=100 for comparison and evaluation of possible effects of the window size on the

detection performance.

D. Application of the High-Order Stochastic Model to Intrusion Detection

To build a partial high-order stochastic model of the norm profile from a set of training
data, we use formula (6-13) to obtain a table (see Table 6-2) from the set of training data. This
table includes the probabilities of the current state conditioned on the sequence of previous (T-1)

states.
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Table 6-2. The transition probability table in the partial high-order stochastic model.

Sequence of Previous T-1 States | Probability of the Current State, Xq
sl | ...... s284 | Total Count

Xn-T#1+ .- Kn-1 217 417 7

Each audit event or state, Xy, in a set of testing data is evaluated to determine whether it
is intrusive or not by examining a sequence of states in a recent-past window of size T, Xn-141,

X1, Xy Formula (6-13) is used to get a probability of this sequence of states by looking up

sesy

the transition probability table in the partial high-order stochastic model as shown in Table 6-2.
This probability provides the basis to evaluate whether the current event is intrusive or not. The
larger the value of this probability, the more likely the current event is normal as we more likely
observe this sequence of states in the condition of normal activities that is captured in the partial
high-order stochastic model of the norm profile. The small default value of 0.000001 is also
assigned to any term in the right-hand side of formula (6-13) that is not available in the transition

probability table.

In this study, we test the Markov chain model application using two window sizes of
T=10 and T=100 for comparison and evaluation of possible performance differences caused by

different window sizes.

IV. RESULTS AND DISCUSSIONS
In this section, we present and discuss the results of testing the Markov chain model

application and the partial high-order stochastic model application.
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A. Analysis of the Testing Results
We first define some terms that are used in the analysis of the testing results.

1. Hit rate: the rate at which intrusive events are correctly identified. It is the ratio of the
number of correctly identified intrusive events to the total number of intrusive events in a

set of testing data.

2. False alarm rate: the rate at which normal events are falsely identified as intrusive events.
It is the ratio of the number of normal events identified as intrusive events to the total

number of normal events in a set of testing data.

3. Signal threshold: a value chosen on the probability scale between 0.0 and 1.0. It’s used as
a point to distinguish intrusive events from normal events. For example, for a signal
threshold point of 0.5 on a probability scale, we considered all events with probabilities at

or above 0.5 as normal and those below 0.5 as attack activities.

A good detection performance should be characterized by a high hit rate and a low false
alarm rate. We use a Receiver Operating Characteristic (ROC) curve [6-21 — 6-22] to analyze the
detection performance of the Markov chain model application and- the partial high-order
stochastic model application. Given a signal threshold, we can identify each audit event in a set
of testing data as normal or intrusive based on the probability value from formula (6-6) for the
Markov chain model application and from formula (6-13) for the partial high-order stochastic
model application. After identifying each audit event in a set of testing data as normal or
intrusive, we compute the hit rate and the false alarm rate. Hence, for a given signal threshold,

we obtain a pair of hit rate and false alarm rate. By varying the value chosen for the signal
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threshold, we obtain pairs of hit rate and false alarm rate. A ROC curve plots those pairs of false
alarm rate and hit rate as points on the curve. The upper-left corner of the chart in which a ROC
curve is plotted represents the point of the 100% hit rate and the 0% false alarm rate. Hence, the

closer a ROC curve is to the upper-left corner of the chart, the better the detection performance.

B. Testing Results on Mill Data Set

Figure 6-1 shows the ROC curves of the Markov chain model application and the partial
high-order stochastic model using the window size of ten, T=10. Figure 6-2 shows the ROC
curves of the Markov chain model application and the partial high-order stochastic model using
the window size of one hundred, T=100. Regardless of different window sizes, the Markov chain
model application produces bett§r performance than the partial high-order stochastic model on

Mill data set.
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(a) The Markov chain model application.
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(b) The partial high-order stochastic model application.

Figure 6-1. The detection performance of the Markov chain model application and the partial

high-order stochastic model application using window size of ten for Mill data set.
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(b) The partial high-order stochastic model application.

Figure 6-2. The detection performance of the Markov chain model application and the partiai

high-order stochastic model :clpplication using window size of one hundred for Mill data set.

C. Testing Results on Pascal Data Set

| Figure 6-3 shows the ROC curves of the Markov chain model application and the partial
high-order stochastic model using the window size of ten, T=10. Figure 6-4 shows the ROC
curves of the Markov chain model application and the partial high-order stochastic model using
the window size of one hundred, T=100. Regardless of different window sizes, the Markov chain

model application produces better performance than the partial high-order stochastic model on

Pascal data set.
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(b) The partial high-order stochastic model application.

Figure 6-3. The detection performance of the Markov chain model application and the partial

high-order stochastic model application using window size of ten for Pascal data set.
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(b) The partial high-order stochastic model application.

Figure 6-4. The detection performance of the Markov chain model application and the partial
high-order stochastic model application using window size of one hundred for Pascal data

set.
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D. Discussions of the Testing Results

The testing results in this study show that the Markov chain model application
cofsistently produces better performance than the partial high-order stochastic model for
intrusion detection, regardless of different window sizes (T=10 and 100) and different data sets
(Mill and Pascal). This may be attributed to the incomplete high-order stochastic model built in
training and the incomplete inference of the probability for a sequence of states made in testing.
It is possible that performance of a high-order stochastic model application can be improved ifa
complete high-order stochastic model is built in training and is used in testing to compute the
joint probability for a sequence of states. However, building such a complete high-order
stochastic model is computationally expensive, and prevents its practical application. It is also a
challenge to determine an appropriate order of a stochastic model application. Based on the
testing results of this study, the first-orde;r stochastic model, specifically the Markov chain model,
appears to provide a viable solution to make a trade-off between performance and computation

cost.

V. CONCLUSION
It has been popular in existing studies to represent the sequential order of events for
intrusién detection based on fundamentally a partial high-order stochastic model and a single
high-order event transition for prediction. However, we show in this study that the performance
of such a partial high-order stochastic model application to intrusion detection is not as good as a
complete Markov chain model application—a first-order stochastic model application—to

intrusion detection. Considering the low computational cost of the Markov chain model
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application and its demonstrated performance as shown in this study, we recommend the use of

the Markov chain model to capture the sequential order of computer or network events for

intrusion detection.

REFERENCES

6-1. Escamilla T. Intrusion Detection: Network Security beyond the Firewall. John Wiley &
Sons: New York, 1998.

6-2. Lippmann R, Fried D, Graf I, Haines J, Kendall K, McClung D, Weber D, Webster S,
Wyschogrod D, Cunningham R, Zissman M. Evaluating intrusion detection systems: The
1998 DARPA off-line intrusion detection evaluation. In Proceedings of the DARPA
Information Survivability Conference and Exposition. IEEE Computer Society: Los
Alamitos, CA: IEEE Computer Society, pp. 12-26, January 2000.

6-3. Debar H, Dacier M, Wespi A', Towards a taxonomy of intrusion-detection systems.
Computer Networks 1999 31: 805-822.

6-4. Ye N, Giordano J, Feldman J. A process control approach to cyber attack detection.
Communications of the ACM 2001 44(8): 76-82.

6-5.  Ye N, Li X, Chen Q, Emran SM, Xu M. Probabilistic techniques for intrusion detection
based on computer audit data. IEEE Transactions on Systems, Man, and Cybernetics
2001 31(4): 266-274.

6-6. Ye N, Chen Q. An anomaly detection technique based on a chi-square statistic for
detecting intrusions into information systems. Quality and Reliability Engineering

International 2001 17(2): 105 - 112.

166




6-7. Emran SM, Ye N. A system architecture for computer intrusion detection. Information,
Knowledge, Systems Management 2001 2(3): 271-290.
6-8. Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system »calls:
= Alternative data models. In Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 133-145, 1999.
6-9. DuMouchel W. Computer Intrusion Detection Based on Bayes Factors for Comparing
Command Transition Probabilities. National Institute of Statistical Sciences, Technical

Report No. 91, http://www.niss.org/downloadabletechreports.html.

6-10. Ju WH, Vardi Y. A Hybrid High-order Markov Chain Model for Computer Intrusion
Detection. National Institute of Statistical Sciences, Technical Report No. 92,

http://www.niss.org/downloadabletechreports.htmi.

6-11. Schonlau M, DuMouchel W, Ju WH, Karr AF, Theus M, Vardi Y. Computer Intrusion:
Detecting Masquerades. National Institute of Statistical Sciences, Technical Report No.

95, http://www.niss.org/downloadabletechreports.html.

6-12. Scott SL. Detecting Network Intrusion Using a Markov Modulated Nonhomogeneous

Poisson Process. http://www-rcf.usc.edu/~sls/fraud.ps.

6-13. Debar H, Becker M, Siboni D. A Neural Network Component for an Intrusion Detection
System. In Proceedings of the 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, CA, pp. 240-250, May 1992.

6-14. Ghosh AK, Schwatzbard A, Shatz M. Learning Program Behavior Profiles for Intrusion
Detection. In Proceedings of the 1" USENIX Workshop on Intrusion Detection and
Network Monitoring, Santa Clara, California, April, 1999,

http://www.rstcorp.com/~anup/.

167




6-15.

6-16.

6-17.

6-18.

6-22.

Wespi, A., H. Debar, M. Dacier and M. Nassehi. “Fixed- vs. Variable-Length Patterns for

Detecting Suspicious Process Behavior.” Journal of Computer Security. 8 (2000), IOS

Press, 159-181.

Eskin E, Lee W, Stolfo SJ. Modeling system calls for intrusion detection with dynamic
window sizes. In Proceedings of the Second DARPA Information Survivability
Conference and Exposition (DISCEX II), pp. 165-175, 2001.

Buttorp P. Stochastic Modeling of Scientific Data. Chapman & Hall: London, 1995.
Winston WL. Operations Research: Applications and Algorithms. Duxbury Press:
Belmont, California, 1994.

Mitchell TM, Machine Learning. McGraw-Hill: Boston, MA, 1997.

Jensen FV. An Introduction to Bayesian Networks. UCL Press: London, 1996.

Swets JA. The Relative Qperating Characteristic in Psychology. Science 1973 182: 990-
1000.

Egan JP. Signal detection theory and ROC-analysis. Academic Press: New York, 1975.

168




Chapter 7 Grid- and Dummy-Cluster-Based Learning of

Normal and Intrusive Clusters

_. Many existing signature recognition techniques for intrusion detection cannot handle
huge amounts of complex data from computer and netw;)rk systems to detect intrusions in a
scalable, incremental manner. This chapter presents an application of an innovative data mining
algorithm—CCAS—to intrusion detection through intrusion signature recognition. CCAS
provides a scalable, incremental procedure to learn clusters of different classes (i.e., normal and
intrusive classes) from historic training data of normal and intrusive activities in computer and
network systems. These clusters of normal and intrusive computer activities are used to classify
observed data of computer activities for intrusion detection. Two different methods of learning
clusters are developed, tested and compared: grid-based and dummy-cluster-based. Training and
testing data are computer audit_ data produced by the Basic Security Module of a Solaris
operating system to record activities in é UNIX-based host machine. The two methods of CCAS
are tested using four different input orders of training data points to examine the robustness
(sensitivity) of these methods to the input order of training data points. The detection
performance and robustness of both CCAS methods are analyzed. The testing results show that
different input orders of training data have certain impact on performance of both methods. The
impact on the performance of CCAS based on dummy clusters is more significant when all
normal data are presented first before attack data in the training data set. CCAS based on dummy
clusters produce better performance than grid-based CCAS for three of the four input orders, and

in overall produce fewer clusters and thus require less computation time in clustering and

classification for intrusion detection.
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I. INTRODUCTION

Computer intrusion detection is an essential part of protecting computer and network
systems from internal or external attacks (intrusions) that compromise security of computer and
network systems. Existing intrusion detection systems use two types of activity data from a
computer and network system: network traffic data and computer audit data. There are two
general categories of intrusion detection techniques: anomaly detection and signature recognition
(misuse detection) [7-1, 7-2]. Anomaly detection techniques first build a profile of a subject’s
normal activities and then signal observed activities as intrusive if they deviate significantly from
the profile of normal activities. Signature reéognition techniques first learn signature patterns of
normal and intrusive activities from training data, and then match these signature patterns with
incoming data of observed activities to determine whether the activities are normal or intrusive.
Anomaly detection is capable of detecting novel attacks, while signature recognition is accurate
in detecting known attacks. Anomaly detection and signature recognition often co-exist in an
intrusion detection system to complement each other.

This chapter focuses on signature recognition techniques for intrusion detection. Many
data mining techniques, such as decision trees [7-3], association rules [7-4], artificial neural
networks and genetic algorithms [7-5, 7-6], and Bayesian networks [7-7], have been used for
intrusion detection through signature recognition. Those data mining techniques are used to learn
signature patterns of normal and intrusive activities from training data, and use those signature
patterns to classify data of observed activities as normal or intrusive.

However, these existing data mining techniques are not capable of learning signature

patterns from large amounts of activity data from computer and network systems in a scalable,
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incremental manner. First of all, activity data from a computer and network system can easily
contain millions of records per day. In addition, each record may have hundreds of data fields. A
data mining algorithm to learn signature patterns from such large amounts of data must be
scalable. Secondly, patterns of normal and intrusive activities likely change over time, and new
forms of attacks appear constantly. Hence, a data mining algorithm must have the incremental
learning ability to update-signature patterns as more training data of normal and intrusive
activities become available.

We have developed an innovative data mining algorithm [7-8, 7-9], called Clustering and
Classification Algorithm — Supervised (CCAS), which has the scalable, incremental learning
ability. CCAS is based on two concepts: supervised clustering for learning signature patterns of
normal and intrusive activities during the training phase, and instance-based classification for
using signature patterns of normal and intrusive activities to classify observed activities during
the testing phase.

‘While incrementally clustering data records in the training data set during the training
phase, CCAS uses dummy clusters to prevent consecutive data records from being clustered
together even though their attribute values are not similar. We call this dummy-cluster-based
CCAS. This method of avoiding “local bias of input order” is different from the grid-based
method found in some existing clustering techniques such as WaveCluster [7-10] and MAFIA
[7-11]. Both dummy-cluster- and grid-based methods are heuristic methods. To investigate which
method is better at avoiding “local bias” and thus is more robust or less sensitive to the order of
training data records, we develop a grid-based CCAS, and conduct a study to compare detection

performance and robustness of the two CCAS methods. This paper presents the results from this

study.
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In this chapter, clustering techniques and instance-based classification techniques are
reviewed first to lay the theoretical foundation for concepts used in CCAS. Then we present the
incremental learning and classification procedures of grid- and dummy-cluster-based CCAS
methods. The application of two CCA-S methods to intrusion detection is described. The

analysis of the testing results is provided.

II. CLUSTERING AND INSTANCE-BASED CLASSIFICATION

A. Clustering

Cluster analysis put data points into clusters based on their similarity. It is mainly used to
discover the underlying structure of the data when we do not have any background knowledge
about the data. Cluster analysis relies on attribute values of data points to partition data points

into clusters such that a given objective function is optimized.

Various methods of solving clﬁstering problems through optimization include greedy
search, dynamic programming, divide-and-conquer and so on. Since solving clustering problems
through optimization is NP-complete in most cases [7-12], many heuristic algorithms have been
developed to produce a good solution that satisfies an attainable bound. Among well-known
heuristics algorithms are hierarchical clustering algorithms and partitioning clustering algorithms
such as the K-means method [7-13]. These algorithms do not necessarily lead to a globally
optimal solution. The hierarchical clustering algorithm uses a nested sequence of partitions,
which can be agglomerative or divisive. Partitioning algorithms construct a partition of the data
points into clusters such that the data points in a cluster are more similar to each other than to the

data points in different clusters. Both the hierarchical and partitioning clustering algorithms
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require a complete matrix of pair-wise distances between all data points before the clustering can
proceed. This creates difficulty in incremental learning that must update clusters when new data
points become available. To do this, non-incremental clustering algorithms need to re-compute or
add new items to the pair-wise distance matrix and start the clustering procedure all over again
using the updated matrix. This solution to handling new data points is not efficient when we deal
with large amounts of data.-

A simple method of incrementally clustering data points is to process data points one by
one and group the next data point into an existing cluster that is closest to this data point.
However, there exists a problem of “local bias of input order”. For example, the first cluster is
constructed with only the first data point in a data set. The second data point in the data set is
grouped into this existing cluster because it is the closest cluster to this second data point and the
only cluster available, even though the second data point may not be similar to the first data point
or have a large distance to the first data point in the space. As a consequence, all data points in
the data set will end up in a single cluster. Therefore, an incremental clustering method must
overcome this problem of “local bias of input order”. The following methods to enable scalable,
incremental learning have been reported.

Grid-based clustering. In this method the data space is partitioned into a number of non-
overlapping regions or grids. A histogram is then constructed to describe the density of the data
points in each grid cell. Only data points in the same grid cell can be clustered together. Hence,
grid cells in the data space prevent all data points in a data set from being grouped into a single
cluster.

Density-based clustering. Density-based clustering uses a local cluster criterion. It requires that a

cluster should contain a certain number of points within some radius. Hence, density-based
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methods consider clusters as regions of data points with high density, and clusters are separated
by regions of data with low density or noise.

Subspace clustering. Subspace clustering is a grid-based method. It is a bottom-up
method of finding dense units in lower dimensional subspaces and merging them to find dense
clusters in higher dimensional subspaces. This method is based on the concept that if a dense cell
exists in k dimensions then-all its projections in a subset of k dimensions are also dense.

Several algorithms have been developed based on the above methods. BIRCH uses a
hierarchical data structure, called CF-tree with thresholds on nodes and leaves, to incrementally
cluster data points [7-14]. DBSCAN is a density-based clustering algorithm [7-15]. WaveCluster
is a density-based and grid-based technique that applies the wavelet transformation to the feature
space of data points [7-10]. MAFIA is a subspace clustering technique that uses the adaptive grid
size to improve clustering quality [7-11]. Among these algorithms BIRCH and DBSCAN support
the incremental learning ability. All these algoritﬁms have the computation complexity of O(N)
with regard to N data points in a data set. Obviously, the computational complexity is also
influenced by other specific parameters of these algorithms.

In all the above clustering algorithms, domain knowledge is usually required either during
clustering to determine parameters in these algorithms or after clustering to interpret clustering
results. For example, using different distance thresholds, a hierarchiéal clustering tree produces
different sets of clusters. This distance threshold is often chosen by examining whether the
resulting set of clusters is meaningful according to domain knowledge. With a large number of

data points and a large number of resulting clusters, it is often difficult to see whether the set of

clusters is meaningful or not.
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There are parameters in each of the above clustering methods. For example, the size and
number of grid cells are parameters in the grid-based clustering methods. In the density-based
method, the radius is a parameter that is critical to clustering results and performance. To choose
appropriate values for these parameters, domain knowledge as well as trial-and-error experiments
are required.

For clustering problems, only attribute values of data points are available to uncover the
clustering structure of data points. However, for classification problems such as intrusion
detection, both attribute values and target values of data points in a training data set are available.
Tafget values of data records in the training data set reflect domain knowledge about the data,
and can be directly used to supervise the clustering of data points and assign a target value to
each cluster. A cluster structure with a target value assigned to each cluster can be used as a
classification function to classify new data points. CCAS uses a scalable clustering procedure
with additional features to support supervised clustering and incremental learning. The resulting

clusters with assigned target values from CCAS represent a classification function.

B. Instance-based Classification

The basis of instance-based classification is that the classification of an instance should
be most similar to the classification of other instances that are similar to it [7-16]. For
ciassiﬁcation we look for k nearest neighbors of a data point to be classified. We classify the data
point based on classes of its neighbors. K-nearest-neighbor methods have been used successfully
in many classification problems [7-17]. However, when original data points are used to select k

nearest neighbors for classification, noise and outliers often have impact on classification
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performance. It is expected that using clusters of data points helps reduce impact of noise and
outliers and thus imprbve classification performance. Another advantage in using clusters of data

points is improvement on computation time to determine k nearest neighbors and thus scalability.

III. CLUSTERING AND CLASSIFICATION ALGORITHM - SUPERVISED (CCAS)

Let each data recorci be a (p+1)-tuple with the predictor variable vector X in p dimensions
as {X;, X, ..., X,} and target variable Y representing the class of each record. Then a data record
I s a point in a p-dimensional space. Each predictor variable is numeric or nominal. ¥ can be a
binary variable with value O or 1, or a multi-category nominal variable. Y is known for each
record in training data. In classification, Y is determined from predictor variables. In this paper,
we describe CCA-S for only the numeric predictor variables and the binary target variable.
Variations of CCA-S for dealing with other types qf predictor variables and target variable will

be presented in future reports.

A. Cluster Representation and Distance Measures

In CCAS algorithms, a cluster L is a summarization of its data points, and is represented
by the centroid of all the data points in it, with coordinates XL, the number of data points, Ny, and

the class label, YL. XL is calculated as:

X = 2= (7-

1)

where X' is the coordinates of the jth point in this cluster.
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The distance from a data point to a cluster can be calculated using different distance

measures. For example, the weighted Canberra distance is:

Z|X - XL , (7-

d(X,L)=>"

X +XL "
2)

and the weighted Euclidean distance is:

d(X,L)= i(Xi_XLi)ZI;‘?’ (7-

i=1
3) -
where X; and XL; are the coordinates of the data point X and the cluster L’s centroid on the i®

dimension, and r;y is the correlation coefficient between the prediction variable X; and the target

variable Y.

B. Training - Supervised Clustering

There are two steps to incrementally group the N data points in the training data set into
clusters supervised by the target class information.
Step 1. Scan the training data and compute the parameters.

This step calculates the squared correlation coefficient r;y between each predictor variable
X; and the target variable Y to determine how relevant each predictor variable is for predicting the

target class in the target variable. Here we give the incremental formula as follows forn=1, ...,

N. -
72 (W) =] 52" (N) 2 : (7-4)
v VS (N)/Svr*(N)
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S:(m) == f S (n —1)+%(Xi(n)—z(n 1))
83 n) = 2252 (1=1)+—(3(n) - i~ ) () - Ko -1)
53 (n)=2= ?Sf,(n—l)+711—(Xy(n)—E(n—l))z

}_(;(n) _ (n— 1)—X—Y(nr;- 1)+ Xr(n)

Z(n) _ (n— I)Z(n 1)+ Xi(n)

n

Step 2. Incrementally group each point in the training data set into clusters.

1. For a new data point X, find the nearest cluster L to this data point using one distance
measure d(X,L) given above.

2. If L has the same target class as that of X, add X into L, and update the centroid coordinates of

L and the number of the data points (Ny) in this cluster:

N i+ Xi
N XLi+ Xi fori=12,,..p
N, +1 (7-5)

N,=N,+1

XLi=

3. Otherwise, create a new cluster with this data point as the centroid; the number of the data
points in the new cluster is 1, and the target class of the new cluster is the class of this data
point.

4. Repeat 1) to 3) until no data point in the training data set is left.

Hence, CCAS performs a non-hierarchical heuristic procedure based on the distance information

as well as the target class information of the data points in the training data set.
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C. Two Methods of Splitting the Clusters

The above clustering procedure produces a cluster structure where each cluster contains
homogeneous data points, i.e., we can consider the clusters in this cluster structure as normal or
intrusive clusters. However, if we only use the procedure shown above, when we look for the
nearest cluster for a new data point, there is no limit on the range of the search area. That means
this data point can even be incorporated into a cluster far away from it in distance. In this case
small clusters by nature tend to combine into large clusters not by nature but due to the input
order of training data points. To deal with this problem, we use two different methods to limit the

search area and promote the splitting of data points into smaller clusters.

D. Dummy Clusters Used in Initial CCA-S

In our initial CCA-S algerithm, a dummy cluster is created in the first step of training
stage for each target class with the centroid coordinates {XLg;, XLys,..., XLy} being the mean
vector of the predictor variables for that target class as follows.

N
> X.(n)

XL, == —, k=0land i=12,..,p (7-6)
Nk

where N, is the number of data points with the target class of k.

The two dummy clusters for the two target classes (0 and 1) respectively are assigned with the
same target class (e.g., 2) which is different from the target classes of 0 and 1. As initial clusters,
the dummy cluster for a given class (0 or 1) is used in the clustering procedure to let the clusters
for this class spread over the entire space of the data population for this class rather than congest

around the centroid location of the data population for this class, because data points in the

179




training data set have a different target class (0 or 1) than the target class of these two dummy
clusters (2).

The number of produced clusters has impact on time of conducting the clustering
procedure and the classification procedure. When we deal with large data sets, we may want to
control the number of produced clusters for speeding up the time of clustering and classification.
We can use two methods to control the number of clusters produced in the training phase. In one
method, we specify a threshold on the number of clusters for each target class. Then during
clustering the related dummy cluster is removed after the number of clusters for that target class
reaches the given threshold, thus slowing down the increase of clusters for that target class. The
other method controls the number of clusters for each class directly. After enough points are used
to create cluster representatives for each target class, new data points will only update the

existing clusters and no new cluster is created.

E. Grid-based Clustering

The grid-based method is a common method found in existing work to cope with the
problem of large clusters not by nature but due to the input order of training data points. This
method first divides the space of data points into grid cells. Many methods are available for this
purpose. In our study each dimension is divided into a set of equal intervals in the range limited
by the minimum and maximum values of data points on this dimension. The number of intervals
on each dimension can be different and is decided by users. Then the whole space is separated
into “cubic” cells by the grids determined by the end points of these intervals. A cluster belongs

to one grid cell and can be assigned a grid index referring to its grid cell.
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Based on the grid cells, a supervised incremental clustering can be performed. For each
training data point, we search the existing clusters to look for the nearest cluster to this data point
in the same grid cell. If the cluster has the same target class as this data point, this data point is
gr&iped into this cluster and the centroid is updated. If there is no cluster in the grid cell of this
data point or the target class of the nearest cluster is different, a new cluster is created with this
data point as the centroid and the target class is the same as this data point. This process repeats
until all data points in training data are incorporated.

There are several methods for searching the clusters in grid cells. In our study, we number
the interval of each dimension that bounds a grid cell with an integer. Then for each grid cell we
have a set of integers for all dimensions, which construct an index vector for this grid cell. Then
we give each cluster or each data point an index vector indicating its grid cell in space. This is
the simplest way to use the grids. The disadvantage is that we have to search every cluster in

order to find the nearest one to a data point.

F. Incremental Learning

CCAS supports the incremental update of clusters with new training data. Note that
formulas (7-4) and (7-5) are given in a recursive form. Hence, the parameters from the previous
training phase, including the correlation coefficient for each predictor variable, the centroid
coordinates of each cluster, and the number of the data points in each cluster, are kept all the time
and thus can be updated incrementally with each of the new training data points by repeating the

steps in training.
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We see that grid is nmot impacting the incremental learning ability of the clustering
procedure. We only need to record the value range and the number of grid intervals in each
dimension. If we use dummy clusters, there is a recursive form for calculating the centroid
coordinates of dummy clusters in training. For c,je {0,1}, j#c, i=1,...,p, and N; and N, are the
numbers of data points in dummy cluster j and ¢ respectively, if current data point belongs to
class ¢, we calculate equation (7-7):

Nc (n-DXL, (n—1)+X(n)
Nc(n—1)+l
XLy(n)=XLyn-1) ande(n) = Nj(n-—l)

XL, (n)= and Nc(n)=NC(n—1)+1

(7-7)

From this equation, we can realize the incremental learning ability for the splitting
method based on dummy clusters. In fact, once we have an initial cluster structure, we do not

need to store the dummy clusters.

G. Testing - Classification

The above supervised clustering, with the method of either dummy clusters or grids, maps
the space of training data points into a cluster structure where normal and intrusive clusters
occupy different locations. These clusters represent signature patterns of mormal or intrusive
activities in a computer system. Based on instance-based classification, we classify a new data
point by comparing the data point with the clusters of signature pattern. We assign the distance-
weighted average of the target values of the k nearest clusters, Lj, ..., L, to the target value of the

data point X as follows:
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1
d*(X,L’)
) :
> YW’ (7-8)
Y=L |

- iwl

=

J

where L; is the jth nearest cluster, W is the weight for the cluster L’ based on the distance from X
to the centroid of this clusfer; the target class of this cluster is YL/, and the target class of the X
data point is Y. The class value Y of this data point falls in the range of [0,1] to describe the
closeness of this data point to the two target classes of O and 1 as presented in the k nearest
clusters of this data point.

Parameter k is chosen by users. In our study when we use CCAS based on dummy
clusters, we use all the clusters produced from the training stage to calculate the target value of a
new data point during the testing stage. It is not appropriate to do this when we use the clusters
produced from the grid-based clustering, where the grid structure limits the growth of clusters.
However, in each grid cell the clustering operation is carried out in a normal manner. Our
experiment result does not show good performance when all the clusters from the grid-based
method are used for classification of a new data point during the testing stage. Therefore, when
we use the grid-based CCAS to produce clusters from the training stage, we use only the clusters
in the same grid cell of a new data point to calculate its target value. This is a strategy to define
the classification neighborhood as a region with fixed size around the new data point. If there is
no cluster in this grid cell, we will search for the nearest cluster in the whole cluster structure to

the new data point and assign the class of this cluster to the target value of this point.
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H. Computation Complexity

Let the number of points in training data be N. The number of predictor variables is p.
The number of output clusters after each phase is M. The first step in training is to scan the data
poi—nfs in the training data, which has the computation complexity O(pN) . For the incremental
clustering in the second step, the upper bound on the computation cost is O(pNM) if we search
the produced cluster structure sequentially. Similar to other scalable clustering algorithms such as
BIRCH and DBSCAN, the overall complexity is O(N) with respect to the number of training data
points. In fact we can apply efficient storage management of the produced clusters. For example,
we can store clusters based on grid cells. If we use B intervals in each dimension and assume that

the produced clusters are evenly distributed among grid cells, the average number of clusters in

one grid cell is about %. When clustering each data point, we only search the clusters in the

grid cell of this data point. The computation cost in this case is O(pN —gip). Of course the

number of grid cells containing clusters is usually much less than the total number of grid cells,
and then computation cost will be greater than this estimate. Using storage management

techniques such as that in [18], this computation cost is improved to almost linear to O(pN) .
The computation cost of classifying a data point is O(pM). Again this computation cost can be

reduced to almost O(p) if we use efficient technique to store and search the cluster structure.
IV. APPLICATION TO INTRUSION DETECTION

CCAS is tested on a large data set of computer activity data for computer intrusion

detection. We want to investigate possible effects of different input orders of training data points
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when two methods of CCAS are used to split clusters in supervised clustering. We will examine
prediction accuracy and robustness of the two different CCAS methods. In this application of
CCAS to computer intrusion detection, we use weighted Euclidean distance in clustering and
classification. In the grid-based method, we set the number of grid intervals in each dimension as

11. We do not control the growth of clusters when using dummy clusters.

A. Data Representation

Computer audit data used in our study consist of audit events sequenced in time order
from a computer host machine. These audit data are recorded by the Basic Security Module
(BSM) in a Solaris operating system. Each audit event has an audit record. Each audit record has
a number of attributes, including event type, user ID, process ID, command type, time, remote IP
address, and so on. We add the t&get class to each audit recérd in the training data set, which 1s 1
if the corresponding audit event is a part of an attack and O otherwise. We also know the ground
truth (normal or intrusive) of each audit record in the testing data set, but let CCAS predict the
target value of each audit record in the testing data set. Then the predicted target value of each
audit record in the testing data set is compared with the true target class of that audit record for
evaluating prediction accuracy of CCAS.

Event type is an important characteristic of activities in a computer system, and has been
successfully used for computer intrusion detection in many existing studies. In our study we also
use this information of event type for intrusion detection. That is, we extract only event type
information from each audit record of an audit event. There are totally 284 different types of

auditable event in this Solaris system. We use 284 predictor variables to represent the frequencies
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of the 284 event types respectively that occur in the recent past of the current audit event. Given a
stream of audit events, we use an exponentially weighted moving average (EWMA) technique to
obtain a smoothed frequency distribution of event types in the recent past of the current audit
evént. Considering the " event as the current event, we use the following formula to compute the
smoothed frequency distribution of the 284 event types in the recent past of the " event:

{Xi(t) = Ax1+(1-2A)x X (t—1) if the current event is the ith event type (7-9)

X(t)=Ax0+(1-A)xX(t—1)if the current event is not the ith event type
where X, (t) is the smoothed observation value of the i predictor variable for the current event,

andill is a smoothing constant which determines the decay rate.

The value of each predictor variable not only captures the information of the current
event, but also reflects the information of the recent events. With this EWMA method, we add
the time characteristic into the values of the predictor variables to represent the frequency
distribution of event types in the recent past of the current event. In our study, we initialize X;(0)
to be O for i = 1,...,284. We let 1 be 0.3—a common value for the smoothing constant [19].

Hence, for each event in the training and testing data set, we obtain a vector of (X;,..., X2g4).

B. Data Sets

We use the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection Evaluation Data
(http://ideval ll.mit.edu) to create our training and testing data. The data were generated in a
local-area network (ILAN) at thé MIT Lincoln Laboratory by simulating activities in a typical
U.S. Air Force LAN. The data include several phases of a distributed denial of service (DDoS)

attack. This attack scenario is carried out over multiple network sessions. These sessions have
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been grouped into 5 attack phases, over the course of which the attacker probes, breaks-in via
some Solaris vulnerability, installs trojan DDoS software, and finally launches a DDoS attack.
There are 15 normal sessions and 7 attack sessions in the data stream from the host machine
called “Mill,” and 63 normal and 4 attack sessions in the other data stream from host machine
“Pascal”. Each of the two event streams in the 2000 data has over a hundred thousand audit
records. We use the data from “Pascal” as the training data and the data from “Mill” as testing
data.

We want to observe possible performance differences between the two methods of CCAS
with respect to robustness to the input order of training data points. In the 2000 DARPA
Intrusion Detection Evaluation Data, audit events occur in different sessions and these sessions
are recorded in almost sequential manner. In the original input order of the data, the attack
sessions are mixed in the middle of normal sessions. In addition to the original input order, we
create other three different input orders of the same data by rearranging sessions while

maintaining the order of audit records in each session. Table 7-1 shows the four input orders.

Table 7-1. Four input orders of training data.

Input order Session orders
1 Original order of sessions
2 Reversed order of sessions
3 Normal sessions followed by attack sessions
4 Attack sessions followed by normal sessions
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V. ANALYSIS OF RESULTS

Two types of errors occur when using an intrusion detection algorithm. A false positive
occurs when the algorithm predicts an event as intrusive when it is in fact normal. A false
negative (or a false alarm) occurs when a truiy intrusive event occurs but the algorithm allows it
to pass as a normal event.

In this study the target value of each audit record in the testing data falls in [0, 1] and
indicates the intrusiveness of the event. Given a signal threshold, we signal an event as intrusive
if the target value is greater than or equal to this signal threshold; otherwise we claim the event as
norfnal. A signal on a truly normal event is a false alarm. A signal on a truly intrusive event is a
hit. A false alarm rate is the ratio of the number of signals on all the normal events in the testing
data to the total number of all the normal events in the testing data. A hit rate is the ratio of the
number of signals on all the intrusive events in the testing data to the total number of all the
intrusive events in the testing data. Hence, given a signal threshold, we obtain a pair of the false
alarm rate and the hit rate. We then plot a ROC (Receiver Operating Characteristics) curve using
pairs of false alarm rate and hit rate that are generated by varying the value of the signal
threshold. In a ROC curve, X-axis represents the false alarm rate while Y-axis represents the hit
rate. The closer the curve is to the top-left corner (100% hit rate and 0% false alarm rate) of the
plot, the better the detection performance. Such a ROC analysis is based on the target value of
each audit event in the testing data for evaluating detection performance on individual audit
events. Hence, it is called the event-based ROC.

In this study we evaluate detection performance on sessions and perform session-based
ROC analysis by obtaining a session signal ratio for each session in the testing data. The session-

based ROC analysis includes the following steps:
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1. Calculate a signal threshold to determine if we should signal an individual event based on
its predicted target value. There are several ways to determine this signal threshold. In our
study we calculate the average 4 and the standard deviation o of predicted target values
for all normal the events in the training data. The signal threshold is set as 4+ao; because
we are mainly interested in detecting a large predicted target value close to 1 which
indicates a possible intrusion, where a is a coefficient to adjust the signal threshold.

2. Compute a “session table” containing a session signal ratio for each session. For each
session we calculate the ratio of the number of signals to the total number of events in the
session as the session signal ratio for a given signal threshold.

3. Plot the ROC curve based on the session signal ratios of all the sessions in the testing
data.

We expect that session signal ratios fof normal sessions are lower than session signal
ratios for intrusive sessions. The choice of a influences detection performance. If we consider
that normal activities produce data points in a certain region of the data space, then ao is a
measurement of the deviation from this “normal” region. We see that a is specific to the data set
if we want to choose the “best” signal threshold for determining whether a data point is normal or
not. In this study, we try various values of a, and it appears that small a values of 0.5, 0.6, and
0.7 produce the best performance.

Figure 7-1 shows the ROC curves on the data in input order 1 for grid- and dummy-
cluster-based CCAS methods. It can be seen that CCAS based on dummy clusters detects at most

71.4% of attack sessions at the level of 0% false alarm rate. If we lower the requirement for the

false alarm rate, it even detects all the attack sessions with the false alarm rate less than 10%
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using the a value of 0.5. The performance of the grid-based CCA-S method is worse. At the level

of 0% false alarm rate, it detects 57.1% of attack sessions at most.
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Figure 7-1. ROC curves for input order 1.

Figure 7-2 shows the ROC curves for input order 2. Both CCAS methods appear to have
similar performance. The performance of CCA-S based on dummy clusters is slightly better than
that of the grid-based CCAS. Performance of both methods seems slightly worse than their
performance for input order 1.

As shown in Figure 7-3, the performance of both methods drops for input order 3. The
performance of CCA-S based on dummy clusters drops significantly even below that of grid-

based CCAS. The performance of grid-based CCA-S is just slightly worse than its performance
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for input orders 1 or 2. At the false alarm rate of 6.67%, grid-based CCAS still correctly detect

57.1% of attack sessions.
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Figure 7-2. ROC curves for input order 2.

A possible explanation for the worse performance of CCAS based on dummy clusters is
provided below. If we assume that normal data points have a multivariate normal distribution,
whereas intrusive data points scatter in the multi-dimensional space as outliers to this
multivariate normal distribution lying at the outside edge of the normal region. With input order
3 of the training data, all the normal data points are considered for clustering first. If we use
dummy clusters, those data points at the outer range of the normal region tend to be merged into
the clusters near the centroid of the normal data distribution and produce much fewer normal

clusters than those produced for other input orders, as we have observed from the statistics of the
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number of normal and intrusive clusters produced from training. For the normal data points in the
testing data that fall at the outer range of the normal region, there may not be any normal clusters
in their neighborhood. Therefore, those normal data points might have been considered closer to
intrusive clusters and have been classified as intrusive, thereby producing more false alarms. This
may explain why the false alarm rate of CCAS based on dummy clusters is high while we try to
improve the hit rate. The grid-based CCAS method uses grids to overcome this problem with this

input order by forcing the normal clusters to split between grid boundaries.
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Figure 7-3. ROC curves for input order 3.

Figure 7-4 shows the performance of both methods for input order 4. CCAS based on
dummy clusters detects at most 85.7% of attack sessions at the level of 0% false alarm rate. This
indicates that 6 of 7 attack sessions in the testing data are detected with no false alarms. The grid-

based CCA-S method detects at most 71.4% of attack sessions at the level of 0% false alarm rate.
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That indicates that 5 of 7 attack sessions are detected. If we lower the requirement for the false

alarm rate, it detects all attack sessions with the false alarm rate of 6.67%.
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Figure 7-4. ROC curves for input order 4.

In overall, the number of clusters produced by the grid-based CCAS method is much
greater than the number of clusters produced by CCAS based on dummy clusters. The number of
clusters for the latter is in hundreds while the former produces thousands of clusters. Obviously
the number of clusters is also impacted by the parameter—the number of grid intervals.

When comparing the number of clusters produced from different input orders of the
training data, it appears that input order 3 leads to the smallest number of normal clusters,
whereas the smallest number of intrusive clusters is produced from input order 4 in which all
intrusive data points are considered first for clustering. If we consider effects of different

methods of splitting clusters, the change in the nufnber of clusters for the grid-based CCAS
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method from one input order to another is very small whereas the change in the number of

clusters for CCA-S based on dummy clusters is large.

VI. CONLUSIONS
In this chapter we present advantages and disadvantages of two different methods (grid-
based and dummy-cluster-based) of splitting clusters while performing CCAS procedures for
clustering and classification. The testing results show that different input orders of training data
have certain impact on performance of both methods. The impact on the performance of CCAS
based on dummy clusters is more significant when all normal data are presented first before
attack data in the training data set. Grid—based CCAS produce more clusters than CCAS based
on dummy clusters, implying that grid-based CCAS takes more computation time in clustering
and classification. CCAS based on dummy clusters produce better performance than grid-based
CCAS for three of the four input orders, and in overall produce fewer clusters. Therefore, we
recommend CCAS based on dummy clusters with respect to detection performance and
computation cost. However, special caution must be taken to avoid the arrangement of having all
normal data before all attack data in the training data set. A training data set with a mixture of

normal data and attack data in the input order is more desirable.

REFERENCES
[7-1] Debar H, Dacier M, Wespi A. Towards a Taxonomy of Intrusion-detection Systems.

Computer Networks 1999 31: 805-822.

[7-2] Axelsson S. Intrusion Detection Systems: A Survey and Taxonomy; Department of

Computer Engineering, Chalmers University of Technology, Goteborg, Sweden, 2000.

194




[7-3] Ye N, Li X, Emra SM. Decision Tree for Signature Recognition and State Classification.
Information Assurance and Security Workshop of IEEE Systems, Man, and Cybernetics;

West Point, New York, USA, 2000.

[7-4] Lee W, Stolfo SJ, Mok K. A Data Mining Framework for Building Intrusion Detection

Models. Proceedings of 1999 IEEE Symposium on Security and Privac 1999; pp 120-132.

[7-5] Sinclair C, Pierce L, Matzner S. An Application of Machine Learning to Network Intrusion
Detection. Proceedings of 15th Annual Computer Security Applications Conference

(ACSAC '99) 1999; pp 371-377.

[7-6] Endler D. Intrusion Ddetection: Applying Machine Learning to Solaris Audit Data.

Proceedings of 14th Annual Computer Security Applications Conference 1998; pp 268-279.

[7-7] Valdes A. Skinner K. Adaptive, Model-based Monitoring for Cyber Attack Detection.

Recent Advances in Intrusion Detection (RAID) 2000; Toulouse, France.

[7-8] Ye N and Li X. A Scalable Clustering Technique for Intrusion Signature Recognition. The
2nd Annual IEEE Systems, Man, and Cybernetics Information Assurance Workshop; West
Point, New York, 2001.

[7-9] Ye N, Li X. Scalable Clustering Techniques for Quality Assurance of Information Systems.

INFORMS San Antonio 2000; Session MD15; San Antonio, Texas, USA, 2000.

[7-10] Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: A Multi-Resolution Clustering
Approach for Very Large Spatial Databases. Proceedings of 24™ VLDB Conference 1998;

New York, USA.

195




[7-11] Harsha SG, Choudhary A. Parallel Subspace Clustering for Very Large Data Sets;

Techinical report: CPDC-TR-9906-010; Northwestern University, 2000.

[7-12] Procopiuc CM. Clustering Problems and Their Applications (a survey); Department of

Computer Science, Duke University, 1997.

[7-13] Jain AK, Dubes RC. Algorithms for Clustering Data; Prentice Hall, 1988.

~

[7-14] Zhang T. Data Clustering For Very Large Datasets Plus Applications; Ph.D. Thesis;

Department of Computer Science, University of Wisconsin — Madison, 1997.

[7-15] Ester M, Kriegel HP, Sander J, Wimmer M, Xu X. Incremental Clustering for Mining in a
data Warehousing Environment. Proceedings of 24™ VLDB Conference, 1998; New York,

USA.
[7-16] Mitchell T. Machine Learning; WCB/McGraw-Hill, 1997.
[7-17] Cherkassky V, Mulier F. Learning from Data; John Wiley & Sons, 1998.

[7-18] Huang C, Bi Q, Stiles R, Harris R. Fast Search Equivalent Encoding Algorithms for Image

Compression Using Vector Quantization. IEEE Trans. on Image Processing 1(3): 413-416.

[7-19] Ryan TP. Statistical Methods for Quality Improvement,; New York: John Wiley & Sons,

1988.

196




Chapter 8 Post-Processing of Cluster Structure for

Robust Application of CCAS to Intrusion Detection

. In Chapter 7, we present how CCAS is used to learn signature patterns of normal and
intrusive activities from training data and use these signatures to classify observed system
activities as normal or intrusive. This chapter presents an extension of CCAS, called robust
CCAS, which aims at improving robustness of CCAS to input order of training data and noises |
and thus performance of CCAS for detecting intrusions into computer and network systems. The
robust CCAS adds the redistribution of training data points, the supérvised hierarchical clustering
of clusters, and the removal of outliers as the post-processing steps after steps in the CCAS
produce clusters of training data points. The robust CCAS is tested using a large set of computer
audit data for intrusion detection. The testing results show that the robust CCAS makes

significant improvement in detection performance and robustness to input order of training data

and noises.

L. INTRODUCTION
Intrusions into computer and network systems have presented significant threats to these
systems for providing continued service. Many intrusions into computer and network systems are
attributed to vulnerabilities and bugs in system and application software. While work on software
engineering continues to improve quality of software and minimize vulnerabilities and bugs,
intrusion detection has also become an important part of assuring quality of software and its
provided service through on-line monitoring of system activities and detection of any attempts to

exploit software vulnerabilities and bugs to break into computer and network systems.

197




There exist two general categories of intrusion detection techniques: anomaly detection and
signature recognition (misuse detection) [8-1 — 8-9]. Anomaly detection techniques first build a
profile of a subject’s normal activities and then signal observed activities as intrusive if they
deviate significantly from the profile of normal activities. Many signature recognition techniques
first learn signature patterns of normal and intrusive activities from training data, and then match
these signature patterns with incoming data of observed activities to determine whether the
activities are normal or intrusive. Anomaly detection is capable of detecting novel attacks, while
signature recognition is accurate in detecting known attacks. Anomaly detection and signature
recdgnition often co-exist in an intrusion detection system to complement each other.

This chapter focuses on signature recognition techniques for intrusion detection. Intrusion
detection through signature recognition can be considered as a classification problem. A set of
attribute or predictor variables, X = (X;, X, ..., X,), can be used to describe normal and intrusive
activities. A target variable, Y, can be used to represent class (normal or intrusive) of activities. ‘
Given a data record of observed activities, intrusion detection is to assign a value to the target
variable of this data record indicating whether this data record is considered as normal or
intrusive. Intrusion detection relies on a classification function, f: X — 7, which can be learned
from training data.

Many data mining techniques, such as decision trees [8-10, 8-11], association rules [8-
12], artificial neural networks and genetic algorithms [8-13, 8-14], and Bayesian networks [8-
15], have been used for intrusion detection through signature recognition. Those data mining
techniques are used to learn signature patterns of normal and intrusive activities from training
data, and use those signature patterns to classify data of observed activities as normal or

intrusive.
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However, these existing data mining techniques are not capable of learning signature
patterns from large amounts of activity data from computer and network systems in a scalable,
incremental manner. First of all, activity data from a computer and network system can easily
contain millions of records per day. In addition, each record may have hundreds of data fields. A
data mining algorithm to learn signature patterns from such large amounts of data must be
scalable. Secondly, patterns of normal and intrusive activities likely change over time, and new
forms of attacks emerge constantly. Hence, a data mining algorithm must have the incremental
learning ability to update signature patterns as more training data of normal and intrusive
activities become available.

We have developed an innovative data mining algorithm [8-16 — 8-19], called Clustering
and Classification Algorithm — Supervised (CCAS), which has the scalable, incremental learning
ability. CCAS is based on two concepts: supervised clustering for learning signature patterns of
normal and intrusive activities during a training phase, and instance-based classification for using
signature patterns of normal and intrusive activities to classify observed activities during a testing
phase. During the training phase, the value of the target variable for each data record in the
training data is known and is used to supervise the clustering of normal and intrusive data
records. The resulting clusters represent signature patterns of normal and intrusive activities in
the training data, and are used during the testing phase for classifying data of observed activities.

However, just like many other data mining algorithms with the incremental learning ability,
CCAS shows some sensitivity to input ordgr of training data because CCAS updates the cluster
structure incrementally while processing training data points in a sequential order [8-19]. To
overcome this problem, we develop an extension of CCAS, called robust CCAS, which aims at

improving robustness of CCAS to input order of training data and noises and thus performance

199




of CCAS for detecting intrusions into computer and network systems. The robust CCAS adds the
redistribution of training data points, the supervised hierarchical clustering of clusters, and the
removal of outliers as the post-processing steps after steps in the CCAS produce clusters of
training data points.

This chapter presents the robust CCAS, its application to intrusion detection, and its
performance in intrusion ‘detection. In section II, CCAS is review to provide the basis of
describing the post-processing steps in the robust CCAS. Section III presents the algorithm of the
robust CCAS. Section IV describes the application of the robust CCAS to intrusion detection and
computer audit data used to test detection performance of the robust CCAS. Section V presents

and discusses the testing results. Section VI concludes the paper.

IL. REVIEW OF CCAS

CCAS is built on a number of concepts in traditional and scalable cluster analysis [8-20 —
8-26] and instance-based classification [8-27 — 8-28] together with several innovative concepts
that we develop. A detailed comparison of CCAS with existing algorithms of cluster analysis and
instance-based classification and a detailed discussion of the scalable, incremental learning
ability of CCAS are provided in [8-19]. In this section, we briefly review steps of CCAS so that
in the next section we can present an extension of CCAS that leads to the robust CCAS.

Let each data record be a (p+1)-tuple with the predictor variable vector X in p dimensions
as {X;, X5, ..., X,} and the target variable Y representing the target class of each record. Then a
data record is a data point in a p-dimensional space. Each predictor variable is numeric or
nominal. ¥ can be a binary variable with value O or 1, or a multi-category nominal variable. Y is

known for each record in training data. In classification, Y is determined from the predictor
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variables. In this paper, we describe CCA-S for only numeric predictor variables and binary
target variable. Variations of CCA-S for dealing with other types of predictor variables and target

variable will be presented in future reports.

A. Cluster Representation and Distance Measures
In CCAS, a cluster L containing a number of data points is represented by the centroid of
all the data points in it, with coordinates XL, the number of data points, Ny, and the target class,

YL. XL is calculated as:

XL=L1r (8-1)

where X is the coordinates of the Jth point in this cluster.
The distance from a data point to a cluster can be calculated using different distance
measures. The weighted Euclidean distance is used in this study of applying CCAS to intrusion

detection:

P
d(X,L)= > (X, - XL)r; (8-2)

i=1l
where X; and XL; are the coordinates of the data point X and the cluster L’s centroid on the ith
dimension, and r;y is the correlation coefficient between the prediction variable X; and the target
variable Y.
In the extension of CCAS discussed in the next section, we also use the distance between

two clusters that is calculated using the above distance measure except that the coordinates of a
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data point are replaced by the coordinates of a cluster centroid. For cluster j and k, the weighted

Euclidean distance is:

P
d(X,L)=_ > (XU - XL')*r} (8-3)

i=1

where XL’ and XL" are the ith coordinates of the centroids of clusters j and k respectively.

B. Training - Supervised Clustering

There are two steps to incrementally group N data points in the training data set into
clusters, which is supervised by the target variable information. CCA-S performs a non-
hierarchical clustering procedure based on the distance information as well as the target class

information of the data points in the training data set.

Step 1. Scan the training data and compute necessary training parameters.
This step calculates the squared correlation coefficient r;y between each predictor variable X; and
the target variable Y to determine how relevant each predictor variable is for classifying the target

class in the target variable. For training data pointsn=1, ..., N,

r..:(n)=( Sl JZ (84)

VSi(n)/Srr(n)

where variance S;(n) and S,,(n), and covariance Siy(n) can be calculated incrementally as shown in [8-

19].
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Step 2. Incrementally group each data point in the training data set into clusters

1. For a data point X, find the nearest cluster L to this data point using the distance
measure d(X,L) given above.

2. If L has the same target class as that of X, add X into L, and update the centroid

coordinates of L and the number of the data points (Vy) in this cluster:

N, XLi+ X
XLi=—~t—— fori=12,,.,p

N, +1 . , (8-5)
N, =N, +1
3. Otherwise, create a new cluster with this data point as the centroid; the number of the
data points in the new cluster is 1, and the target class of the new cluster is the class of

this data point.

4. Repeat 1) to 3) until no data point is left in the training data set.

C. Method of Splitting the Clusters

The above clustering procedure produces a cluster structure where each cluster contains
homogeneous data points, i.e., we can consider the clusters in this cluster structure as normal or
intrusive clusters. However, if we only use the above procedure, when we look for the nearest
cluster for a new data point there is no limit in the range of the search area. It means that this data
point can even be grouped into a cluster far away from it.in distance. In this case small clusters
by nature tend to combine into large clusters not by nature but due to the input order of training

data points. To deal with this problem, CCAS may use one of two different methods to limit the
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search area and enforce the splitting of data points into smaller clusters: the dummy clusters
method and the grid-based method [8-19].

In this study of applying CCAS to intrusion detection, we use the grid-based method. This
method first divides the space of data points into grid cells. Many methods are available for this
purpose. In this study each dimension is divided into a set of equal intervals in the range limited
by the minimum and maximum values of data points on this dimension. The number of intervals
on each dimension can be different and is decided by users. Therefore, the whole data space is
divided into “cubic” cells by the grids determined by the end points of these intervals. A cluster
belongs to one grid cell and can be assigned a grid index referring to its grid cell.

Based on the grid cells, a supervised incremental clustering can be performed. For each
training data point, we search the existing clusters to look for the nearest cluster to this data point
in the same grid cell. If the cluster has the same target class as this data point, this data point is
grouped into this cluster and the centroid is updated. If there is no éluster in the grid cell of this
data point or the target class of the nearest cluster is different, a new cluster is created with this
data point as the centroid and the target class is the same as this data point. This process repeats

until all data points in the training data set are incorporated.

D. Testing - Classification

The above supervised clustering procedure maps the training data points into a cluster
structure with clusters of different classes. For example, for intrusion detection a cluster structure
from the training stage contains normal and intrusive clusters that represent signature patterns of

normal or intrusive activities in a computer and network system. Based on instance-based
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classification, we classify a new data point by comparing the data point with the clusters. We
assign the distance-weighted average of the target values of the k nearest clusters, Ly, ..., L, to

the target value of the data point X as follows:

_ 1
d*(X,L)

k

YL'W’ (8-6)
y=-2

W
j=1

i

where L; is the jth nearest cluster, W is the weight for the cluster I based on the distance from X
to the centroid of this cluster; the target class of this cluster is YL/, and the target class of the X
data point is Y. The class value Y of this data point falls in the range of [0,1] to describe the

closeness of this data point to the two target classes of 0 and 1.

IIL. ROBUST CCAS

Our study reported in [8-19] indicates that CCA-S shows some sensitivity to input order of |
training data points. One cause of the robustness problem is that the clusters are incrementally
formed by incorporating training data points one by one. A data point is incorporated into an
existing cluster structure that considers only the training data points processed so far. That is, the
existing cluster structure reflects only a local view based on the training data points that have
been processed but not all the training data points. Presenting the training data points in a
different order may result in a quite different cluster structure, and consequently different
performance in classifying new data. Although dividing the data space into grid cells and

allowing the formation of clusters only within grid cells help alleviate the robustness problem
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with input order of training data points, classification performance still shows some sensitivity to
input order of training data points as shown in [8-19].

Therefore, we extend CCAS with additional steps to address the robustness problem,
including redistributing training data points to refine the clusters, hierarchically clustering the
produced clusters, and removing outliers. These additional steps apply to the produced clusters
from basic steps in CCAS. Hence, these steps are called post-processing steps. Table 8-1
summarizes problems that are addressed by these additional steps in the robust CCAS and the

grid-based clustering method in CCAS.

Table 8-1. Problems addressed by the additional steps in the robust CCAS and the grid-based

clustering method in CCAS.

Incremental learning  Scalability = Robustness

Grid-based clustering ' v v v
Redistribution v
Hierarchical clustering v v
Outlier removal v

A. Redistribution of Training Data Points

Using the redistribution method, all data points in the training data set are clustered again
using the clusters produced from CCAS as the initial clusters which are called the seed clusters.
With the seed clusters, we start the training steps of CCAS all over again to process all the
training data points in a sequential manner. The clustering procedure is same as that in CCAS,
except that when a seed cluster is found to be the nearest cluster to a data point, the seed cluster

is discarded and is replaced with a new cluster with the data point as the centroid of the new
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cluster. In the redistribution method, we allow new clusters to emerge and thus allow adjustments
of the cluster structure. Obviously this redistribution process can be repeated for many times.
Classification performance is expected to improve with repetition but at computation cost. Our

experiments show that usually one time of redistribution is sufficient for improving robustness.

B. Hierarchical Clusterin,;ﬂr of Produced Clusters

In the grid-based clustering method of CCAS, the search for the nearest cluster to a data
point considers only the data point’s grid cell. However, a natural cluster may correspond to
several produced clusters falling into different grid cells respectively in the neighborhood. Hence,
we employ a supervised hierarchical clustering procedure to regroup the produced clusters. This
supervised hierarchical clustering algorithm is different from the traditional hierarchical
clustering algorithms [6-20 — 6-21] in that the supervised hierarchical clustering algorithm
combines only a pair of clusters which not only are closest to each other but also have the same
target class into one larger cluster. Figure 8-1 illustrates this concept in one dimensional space.
Each point represents the centroid of a cluster. They are in two classes indicated by different
shapes. The points (original clusters) in each circle have the same class and are closest to each
other. They are grouped into one larger cluster. In Figure 8-1 the closest points with different

target classes cannot be combined.
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Figure 8-1. An illustration of the supervised hierarchical clustering algorithm.

In our supervised hierarchical clustering algorithm, a single linkage method [8-20 - 8-21]
is used in calculating the distance between two clusters, where the distance between two clusters
is defined as the distance between their nearest “points”. These points are the produced clusters
from CCAS. The distance of two produced clusters is the distance between their centroids.

The application of the supervised hierarchical clustering algorithm to the produced clusters
from CCAS not only improves the robustness of the cluster structure but also reduces the number
of the resulting clusters. This results in improvement in computation time to perform

classification and thus improvement in scalability.

C. Removal of Qutliers

We can remove outliers in the cluster structure. Clusters that have few data points may
represent unusual noises in training data and thus outliers. Hence, clusters with fewer data points
than a threshold value are removed. The threshold on the mini.mum of data points in a cluster can

be chosen based on the average number of data points in the produced clusters from CCAS. The
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thresholds on clusters with different target classes can be different. In this study of applying the

robust CCAS to intrusion detection, we set the threshold value to 1.

D. Workflow of the Robust CCAS

The grid-based clustering method provides basic steps in CCAS. The post-processing
methods of redistribution, ;upervised hierarchical clustering and outlier removal can be arranged
in any order. Each post-processing method can directly be applied to the produced clusters from
another method. Figure 8-2 shows the workflow used in our application of the robust CCAS to
intrusion detection. This workflow includes five phases. Phase 1 is necessary because we need to
calculate the correlation coefficients in the grid-based clustering method of CCAS and record the
value range of each predictor variable with the minimum and maximum values of all the training

data points. Phases 2-5 are the major phases of the robust CCAS.

Phase 1 [ Scan and pre-processing ]
Phase 2 [ Grid-based clustering ]
Phase 3 [ Redistribution J

1

Phase 4 [ Supervised hierarchical clustering and outlier removal J

||

Phase 5 [ Supervised hierarchical clustering }

Figure 8-2. Workflow of the robust CCA-S in our application.
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1. Phase 1 is the preprocessing step. In this phase, we scan the data points in the training
data, calculate the correlation coefficient between each predictor and the target variable,
and record the value range for each predictor variable determined by the minimum and
maximum values of all the data points.

2. Phase 2 is the grid-based clustering process. We apply the supervised non-hierarchical
clustering algorithm to incrementally incorporate all the data points in the training data
into clusters.

3. In phase 3, we use the output clusters from phase 2 as the seed clusters to redistribute
the training data points to get a more accurate cluster structure.

4. In phase 4, we first apply the supervised hierarchical clustering algorithm. After this,
outliers become more obvious. Then we remove possible outliers according to the
thresholds set by users. -

5. In phase 5, we apply the supervised hierarchical clustering algorithm to the produced
clusters from Phase 4 after removing outliers for the second time to get a more compact
and accurate cluster structure.

There are differences in the classification stage after each of the major phases of the
robust CCAS. We may use all the produced clusters in calculating the target value of a new data
point. However, using all the produced clusters is not appropriate when we consider the grid-
based clustering method in which grid cells limit the formation of clusters. Therefore, in phases 2
and 3, we use all the clusters in the grid cell of a data point as the nearest neighbors to calculate
the target value of the data point. If there is no cluster in this grid cell, the target value of this data

point is the same as the nearest cluster to this data point in the entire data space. Grid cells play
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no role in phases 4 and 5. Hence, we use all the produced clusters in the entire data space to

calculate the target value of a new data point.

E. Incremental Learning Ability

As shown in [8-19], CCA-S supports the incremental update of the clusters with new
training data. Among the post-processing methods in the robust CCAS, the redistribution method
uses the same steps in CCAS but starts with the seed clusters, and thus this method also supports
the incremental learning ability. The outlier removal method does not involve incremental
learning. Only the supervised hierarchical clustering method needs to be given a special
consideration because this method combines original clusters into larger clusters and thus
changes the original cluster structure. Hence, to support the incremental learning ability, we need

to keep the cluster structure after phase 3.

F. Computation Complexity

Let the number of output clusters after each phase be M. For the first phase of scanning

the data points in the training data, the computation complexity is O(pN). For grid-based
clustering in phases 2 and 3, the upper bound on the computation cost is O(pNM') if we search
the produced cluster structure sequentially. However, we can employ efficient storage and
management of the produced clusters. Using the technique such as one in [8-18], this
computation cost can be improved to almost linear to O(pN) . For the supervised hierarchical
clustering method in phases 4 and 5, the computation cost is bounded by a constant that depends

on the number of input clusters. The computation of pair-wise distances in the single linkage
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M(M-1)

method of hierarchical clustering is O( ). However, since this supervised hierarchical

clustering algorithm allows only clusters with the; same class label to be combined, many
pairwise distances will need to be computed. With an efficient algorithm in our application, the
computation cost in our testing experiments is very low. The computation cost of removing
outliers in phase 4 is O(M, ) The computation cost of classifying a data point is O(pM). Again
this computation cost can be reduced to almost O(p) if we use efficient techniques to store and

search the cluster structure.

IV. APPLICATION TO INTRUSION DETECTION
The robust CCA-S is tested using a large set of computer audit data for intrusion

detection to evaluate detection performance and robustness.

A. Data Representation

Computer audit data used in this application consist of audit records for a sequence of audit
events from a host machine with a Solaris operating system. The Basic Security Module (BSM)
in the Solaris operating system generates computer audit data. There is an audit record for each
audit event. Each audit record has a number of attributes, including event type, user ID, process
ID, command type, time, remote IP address, and so on. The target class of an audit event is 1 if
the event is from an attack, and O otherwise. The target class of each audit event is provided for
computer audit data used for training. We also know the true target class of each audit event used

for testing. However, we use the robust CCAS to predict the target value of each audit event in
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the testing data set, and then compare the predicted target value with the true target class of each
event for evaluating detection performance of the robust CCAS.

In this study, we use only the information of event type from each audit record because
exfsﬁng work on intrusion detection [8-1 — 8-11] has demonstrated the effectiveness of this data
field in intrusion detection. There are in total 284 different types of audit events in this Solaris
operating system. We use 284 predictor variables to represent the frequencies of the 284 event
types respectively that occur in the recent past of the current audit event. Given a stream of audit
events, we use an exponentially weighted moying average (EWMA) technique [8-29] to obtain a
sméothed frequency distribution of event types in the recent past of the current audit event.
Considering the #* event as the current event, we use the following formula to compute the
smoothed frequency distribution of the 284 event types in the recent past of the ™ event:

{X,.(t)= AX1+(1—2)xX (t—1) if the current event is the ith event type 8-7)

X(t)=Ax0+(1-2)xX (t—1) if the current event is not the ith event type
where X,(¢) is the smoothed observation value of the i™ predictor variable for the current event,
and A is a smoothing constant which determines the decay rate.

The value of each predictor variable captures not only the information of the current event,
but also the information of the recent events. With this EWMA method, we add the time
characteristic into the values of the predictor variables to represent the frequency distribution of
event types in the recent past of the current event. In our study, we initialize X;(0) to be 0 for i =
1,...,284. We let A be 0.3—a common value for the smoothing constant [8-29]. Hence, for each

event in the training and testing data set, we obtain a vector of (X,..., X2s4).
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B. Training and Testing Data

We use the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection Evaluation Data

(http://ideval.ll.mit.edu/) to create our training and testing data. The data are generated in a local-

are;network (LAN) at the MIT Lincoln Laboratory by simulating activities in a typical U.S. Air
Force LAN. The data include several phases of a distributed denial of service (DDoS) attack.
This attack scenario is carried out over multiple network sessions. These sessions have been
grouped into 5 attack phases, over the course of which the attacker probes, breaks in via some
Solgris vulnerability, installs trojan DDoS software, and finally launches a DDoS attack. There
are 15 normal sessions and 7 attack sessions in the data stream from the host machine called
“Mill,” and 63 normal and 4 attack sessions in the other data stream from host machine “Pascal”.
Each of the two event streams has over a hundred thousand audit records. We use the data from
“Pascal” as the training data and the data from “Mill” as the testing data.

To examine the robustness of CCA-S and its extension, we use two different input orders
of the training data. In the 2000 DARPA Intrusion Detection Evaluation Data, the attack sessions
are mixed with normal sessions. In addition to the original input order, we create a reversed input
order by reversing the order of sessions while maintaining the order of audit events in each
session. We refer to the original and reversed input orders as input orders 1 and 2 respectively.
We also test the sensitivity of CCA-S and its extension to the grid parameter using input order 1.
In our study we choose an equal number of grid intervals for each dimension. We use 6 and 11
intervals to build grid cells for input order 1 (see Table 8-2). For input order 2, only 11 intervals

are used to build grid cells.

Table 8-2. The number of grid intervals to set up grid cells.

214




Input order
Original (1) Reversed (2)
Number of 11 v - v
grid intervals 6 v
V. RESULT ANALYSIS

Two types of errorsb\occur when using an intrusion detection algorithm. A false positive
occurs when the algorithm predicts an event as intrusive when it is in fact normal. A false
negative (or a false alarm) occurs when a truly intrusive event occurs But the algorithm allows it
to pass as a normal event.

In this study the target value of each audit record in the testing data falls in [0, 1] and
indicates the intrusiveness of the corresponding audit event. Given a signal threshold, we signal
an event as intrusive if the target value is greater than or equal to this signal threshold; otherwise
we claim the event as normal. A signal on a truly normal event is a false alarm. A signal on a
truly intrusive event is a hit. A false alarm rate is the ratio of the number of signals on all the
normal events in the testing data to the total number of all the normal events in the testing data. A
hit rate is the ratio of the number of signals on all the intrusive events in the testing data to the
total number of all the intrusive events in the testing data. Hence, given a signal threshold, we
obtain a pair of the false alarm rate and the hit rate. We then plot a ROC (Receiver Operating
Characteristics) curve using pairs of false alarm rate and hit rate that are generated by varying the
value of the signal threshold. In 2 ROC curve, X-axis represents the false alarm rate while Y-axis
represents the hit rate. The closer the curve is to the top-left corner (100% hit rate and 0% false
alarm rate) of the plot, the better the detection performance. Such a ROC analysis is based on the

target value of each audit event in the testing data for evaluating detection performance on
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individual audit events. Hence, it is called the event-based ROC. However, it is not appropriate

to detect intrusions based on individual events, because the same audit event may be common in

both normal and intrusive activities. It is important to examine aggregate sets of individual

events.

In this study we evaluate detection performance on sessions and perform session-based

ROC analysis by obtaining a session signal ratio for each session in the testing data. There are

usually many audit events in a session. The session-based ROC analysis includes the following

steps:

1.

Calculate a signal threshold to determine if we should signal an individual event based on
its predicted target value. There are several ways to determine this signal threshold. In our
study we calculate the average  and the standard deviation o of predicted target values
for all the normal events in the training data. The signal threshold is set as g+ao, because
we are mainly interested in detecting a large predicted target value close to 1 which
indicates an possible intrusion, where a is a coefficient to adjust the signal threshold.
Compute a “session table” containing a session signal ratio for each session. For each
session we calculate the ratio of the number of signals to the total number of events in the
session as the session signal ratio for a given signal threshold.

Plot the ROC curve based on the session signal ratios of all the sessions in the testing

data.

We expect that session signal ratios for normal sessions are lower than session signal ratios for

intrusive sessions. In this study, we experiment with various values of a, and it appears that small

a values of 0.5, 0.6, and 0.7 produce the best performance.
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Figure 8-3 shows the ROC analysis of the testing results from phases 2, 3, 4, and 5 of the
robust CCA-S using 11 grid intervals and input order 1 of the training data. The detection
performance of the cluster structure from phase 2 or phase 3 is not satisfactory. The grid-based
clustering method and the post-processing method of redistribution in phases 2 and 3 respectively
detect only about 60% of the attack sessions when no false alarms are produced on normal
sessions. This indicates that 5 of the 7 attack sessions are detected. After phase 4 using the
supervised hierarchical clustering method and the outlier removal method, we obtain the 100%
detection rate with no false alarms using two signal thresholds. After phase 5 using the
supervised hierarchical clustering method, all the three signal thresholds produce the 100%
detection rate and the 0% false alarm rate. In this testing data set, there are two attack sessions,
each of which consists of only one audit event. Attack sessions with few audit events are very
difficult to detect. The robust CCA-S detects both attack sessions and demonstrates good

performance.
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Figure 8-3. ROC analysis for the robust CCA-S using 11 grid intervals and input order 1.
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To examine the robustness of CCAS and its extension to input order of training data, we
perform ROC analysis for input order 2 of the training data (see Figure 8-4). The number of grid
intervals to build grid cells is still 11. From the ROC curves in Figure 8-4, we can see that the
input order of the training data has impact on the grid-based clustering method in phase 2 and the
redistribution method of post-processing in phase 3, because the ROC curves for this input order
are worse than those for input order 1, especially in phase 3. After the supervised hierarchical
clustering method and the outlier removal method of post-processing in phase 4, the detection
performance becomes a little better than that in both phases 2 and 3. One signal threshold
produces the best performance with a detection rate of a little above 70% and no false alarms.
After the supervised hierarchical clustering method in phase 5, we again obtain good detection
performance with two signal thresholds producing the 100% hit rate and the 0% false alarm rate.
Hence, the additional steps in the robust CCAS have made detection performance of CCAS

robust to the different input orders of the training data.

(a) Phase 2
1 A
o.ai : T
2 0.6 - B O e "o A s e - —e—0.5STD
= —m—0.6STD
£ 0.4 . 0.7STD
0.2 -
0 » T T T r
0 0.2 0.4 0.6 0.8 1
False alarm rate

219




(b) Phase 3
1 ”
0.8 -
s 06 4 s | —e—0ssTD
E & ~#—0.6STD
= 0.4 1 i 0.7STD
- R B R ®eoa e B e 0 M morson
024 4
O £ r" T T T T 1
0 0.2 0.4 0.6 0.8 1
False alarm rate
(c) Phase 4
1 !'"‘
o g'g i—n YL NI YTV P T) PV rY-rY [ —e—0.5SD
.E 024 "\ : —®—0.6SD
= 02 ;: 0.7SD
0 = : . ; . |
0 0.2 0.4 0.6 0.8 1
False alarm rate )
(d) Phase 5
] -
2 3'2 ! —e—0.5SD
s 7 —=—0.6SD
T 0.4
02 0.7SD
0 {2‘ T T T T '
0 0.2 0.4 0.6 0.8 1
Flase alarm rate

Figure 8-4. ROC analysis for the robust CCA-S using 11 grid intervals and input order 2.

We also test the sensitivity of CCA-S and its extension to the grid parameter by obtaining
detection performance of CCAS and its extension using 6 grid intervals in each dimension to
building grid cells. This is tested only for input order 1 for training data to see any difference
between 11 grid intervals and 6 grid intervals and thus the sensitivity of CCAS and its extension

to this grid parameter. Figure 8-5 shows the ROC'analysis for the 6 grid intervals which is
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compared with the ROC analysis in Figure 8-3 for the 11 grid intervals. We can see that there is a
slight difference between detection performance of 6 grid intervals and 11 grid intervals after
phase 2 for the same input order. However, after phase 5 the 6 grid intervals produce the same

detection performance as the 11 grid intervals, indicating that the robust CCAS is not sensitive to

the grid parameter.
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(c) Phase 4
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Figure 8-5. ROC analysis for the robust CCA-S using 6 grid intervals and input order 1.

It is expected that finer grid cells ﬁay produce better performance since they lead to more
clusters and thus allow important patterns of data points to be captured. If the number of grid
intervals is too small, natural clusters of the same target class may merge into larger clusters due
to an unusual input order of training data points in the incremental clustering procedure,
consequently resulting in unsatisfactory classification performance. However, too many grid
intervals force natural clusters to be separated into smaller clusters. In some special cases, this
may produce a poor cluster structure even after Phases 4 and 5 and thus poor classification
performance. Another shortcoming of a small size of grid interval is high computation and

storage cost. The robust CCA-S provides robustness to the grid parameter to some extent.
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VI. CONCLUSION

In this chapter we present the robust CCAS—a robust, scalable data mining algorithm
with the incremental learning ability. The robust CCAS adds the post-processing steps to the
basic steps of CCAS, including the redistribution of training data points, the supervised
hierarchical clustering of clusters, and the removal of outliers which are applied to the produced
clusters from CCAS. The robust CCAS is tested using a large set of computer audit data for
intrusion detection. The testing results show that the robust CCAS makes significant
improvement in detection performance and robustness to input order of training data and noises.
The application of the robust CCAS is not limited to intrusion detection. It can also be applied to

other data mining problems for classification.
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